{"title":"A non-invasive heart rate prediction method using a convolutional approach.","authors":"Ercument Karapinar, Ender Sevinc","doi":"10.1007/s11517-024-03217-6","DOIUrl":null,"url":null,"abstract":"<p><p>The research focuses on leveraging convolutional neural networks (CNNs) to enhance the analysis of physiological signals, specifically photoplethysmogram (PPG) data which is a valuable tool for non-invasive heart rate prediction. Recognizing the global challenge of heart failure, the study seeks to provide a rapid, accurate, and non-invasive alternative to traditional, uncomfortable blood pressure cuffs. To achieve more accurate and efficient heart rate estimates, a k-fold CNN model with an optimal number of convolutional layers is employed. While the findings show promising results, the study addresses potential sources of error in cuffless PPG-based heart rate measurement, including motion artifacts and skin color variations, emphasizing the need for validation against gold standard methods. The research optimizes a CNN model with optimal layers, operating on 1D arrays of 8-s data slices and employing k-fold cross-validation to mitigate probabilistic uncertainties. Finally, the model yields a remarkable minimum absolute error (MAE) rate of 6.98 beats per minute (bpm), marking a significant 10% improvement over recent studies. The study also advances medical diagnostics and data analysis, then lays a strong foundation for developing cost-effective, reliable devices that offer a more comfortable and efficient way of predicting heart rate.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03217-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The research focuses on leveraging convolutional neural networks (CNNs) to enhance the analysis of physiological signals, specifically photoplethysmogram (PPG) data which is a valuable tool for non-invasive heart rate prediction. Recognizing the global challenge of heart failure, the study seeks to provide a rapid, accurate, and non-invasive alternative to traditional, uncomfortable blood pressure cuffs. To achieve more accurate and efficient heart rate estimates, a k-fold CNN model with an optimal number of convolutional layers is employed. While the findings show promising results, the study addresses potential sources of error in cuffless PPG-based heart rate measurement, including motion artifacts and skin color variations, emphasizing the need for validation against gold standard methods. The research optimizes a CNN model with optimal layers, operating on 1D arrays of 8-s data slices and employing k-fold cross-validation to mitigate probabilistic uncertainties. Finally, the model yields a remarkable minimum absolute error (MAE) rate of 6.98 beats per minute (bpm), marking a significant 10% improvement over recent studies. The study also advances medical diagnostics and data analysis, then lays a strong foundation for developing cost-effective, reliable devices that offer a more comfortable and efficient way of predicting heart rate.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).