Transcriptome-based network analysis related to regulatory T cells infiltration identified RCN1 as a potential biomarker for prognosis in clear cell renal cell carcinoma.
IF 4 3区 生物学Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yang Qixin, Huang Jing, He Jiang, Liu Xueyang, Yu Lu, Li Yuehua
{"title":"Transcriptome-based network analysis related to regulatory T cells infiltration identified RCN1 as a potential biomarker for prognosis in clear cell renal cell carcinoma.","authors":"Yang Qixin, Huang Jing, He Jiang, Liu Xueyang, Yu Lu, Li Yuehua","doi":"10.1186/s13040-024-00404-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Regulatory T cells (Tregs) play a critical role in shaping the immunosuppressive microenvironment within tumors. Investigating the role of Tregs in Clear cell renal cell carcinoma (ccRCC) is crucial for identifying prognostic markers and therapeutic targets for ccRCC.</p><p><strong>Methods: </strong>Weighted gene co-expression network analysis (WGCNA) was utilized to pinpoint modules related to Treg infiltration in TCGA-KIRC samples. Following this, consensus clustering was employed to derive two clusters associated with Treg infiltration in ccRCC. A prognostic model was then developed using the gene module associated with Treg infiltration. We then evaluated the ability of the prognostic model to predict ccRCC overall survival and demonstrated that RCN1 can be used as a target to predict ccRCC prognosis.</p><p><strong>Results: </strong>We deduce that the two clusters associated with Treg infiltration exhibit distinct compositions of the immune microenvironment, pathway activations, prognosis, and drug sensitivities commonly utilized in ccRCC treatment. Furthermore, a 7-gene model risk score, developed based on ccRCC Treg infiltration, proved to be a reliable prognostic marker in both training and validation cohorts. Additionally, survival analysis indicated that RCN1 serves as a reliable prognostic factor for ccRCC. Single-cell sequencing analysis revealed that RCN1 is predominantly expressed in tumor cells. A pan-cancer analysis highlighted that RCN1 is linked with poor prognosis and the activation of inflammatory response pathways across various cancers.</p><p><strong>Conclusion: </strong>We developed a prognostic model associated with Treg infiltration, which facilitates the clinical categorization of ccRCC progression. Moreover, our findings underscore the significant potential of RCN1 as a ccRCC biomarker.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"51"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00404-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Regulatory T cells (Tregs) play a critical role in shaping the immunosuppressive microenvironment within tumors. Investigating the role of Tregs in Clear cell renal cell carcinoma (ccRCC) is crucial for identifying prognostic markers and therapeutic targets for ccRCC.
Methods: Weighted gene co-expression network analysis (WGCNA) was utilized to pinpoint modules related to Treg infiltration in TCGA-KIRC samples. Following this, consensus clustering was employed to derive two clusters associated with Treg infiltration in ccRCC. A prognostic model was then developed using the gene module associated with Treg infiltration. We then evaluated the ability of the prognostic model to predict ccRCC overall survival and demonstrated that RCN1 can be used as a target to predict ccRCC prognosis.
Results: We deduce that the two clusters associated with Treg infiltration exhibit distinct compositions of the immune microenvironment, pathway activations, prognosis, and drug sensitivities commonly utilized in ccRCC treatment. Furthermore, a 7-gene model risk score, developed based on ccRCC Treg infiltration, proved to be a reliable prognostic marker in both training and validation cohorts. Additionally, survival analysis indicated that RCN1 serves as a reliable prognostic factor for ccRCC. Single-cell sequencing analysis revealed that RCN1 is predominantly expressed in tumor cells. A pan-cancer analysis highlighted that RCN1 is linked with poor prognosis and the activation of inflammatory response pathways across various cancers.
Conclusion: We developed a prognostic model associated with Treg infiltration, which facilitates the clinical categorization of ccRCC progression. Moreover, our findings underscore the significant potential of RCN1 as a ccRCC biomarker.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.