Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning.

Q1 Computer Science
Computing and Software for Big Science Pub Date : 2024-01-01 Epub Date: 2024-05-22 DOI:10.1007/s41781-024-00119-y
G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, F V Feilitzsch, S Fichtinger, D Fuchs, A Garai, V M Ghete, P Gorla, P V Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, S Kuckuk, H Kluck, H Kraus, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, K Niedermayer, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, V Wagner, M Willers, V Zema, C Heitzinger, W Waltenberger
{"title":"Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning.","authors":"G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D'Addabbo, S Di Lorenzo, L Einfalt, A Erb, F V Feilitzsch, S Fichtinger, D Fuchs, A Garai, V M Ghete, P Gorla, P V Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, S Kuckuk, H Kluck, H Kraus, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, K Niedermayer, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, V Wagner, M Willers, V Zema, C Heitzinger, W Waltenberger","doi":"10.1007/s41781-024-00119-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c <math><mmultiscripts><mrow></mrow> <mrow></mrow> <mn>2</mn></mmultiscripts> </math> dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. First, we trained on a simulation of the response of three Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal manual interventions.</p>","PeriodicalId":36026,"journal":{"name":"Computing and Software for Big Science","volume":"8 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing and Software for Big Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41781-024-00119-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c 2 dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. First, we trained on a simulation of the response of three Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal manual interventions.

通过深度强化学习优化低温量热仪的运行
在目前的直接探测实验中,带有过渡边传感器的低温声子探测器对亚GeV/c 2 暗物质与原子核的相互作用具有最佳灵敏度。在这种设备中,温度计的温度及其读出电路中的偏置电流需要仔细优化,以获得最佳的探测器性能。这项工作并不轻松,通常需要专家手动完成。在我们的工作中,我们通过强化学习在两种情况下实现了程序自动化。首先,我们对三个低温稀有事件搜索超导温度计(CRESST)探测器的响应进行模拟训练,并将其用作虚拟强化学习环境。其次,我们对在 CRESST 地下装置中运行的相同探测器进行了现场训练。在这两种情况下,我们都能以与人类专家相当的速度和结果优化标准探测器。我们的方法能够以最少的人工干预调整大规模低温探测器设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computing and Software for Big Science
Computing and Software for Big Science Computer Science-Computer Science (miscellaneous)
CiteScore
6.20
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信