Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-11-12 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae145
Fatima Mostefai, Jean-Christophe Grenier, Raphaël Poujol, Julie Hussin
{"title":"Refining SARS-CoV-2 intra-host variation by leveraging large-scale sequencing data.","authors":"Fatima Mostefai, Jean-Christophe Grenier, Raphaël Poujol, Julie Hussin","doi":"10.1093/nargab/lqae145","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding viral genome evolution during host infection is crucial for grasping viral diversity and evolution. Analyzing intra-host single nucleotide variants (iSNVs) offers insights into new lineage emergence, which is important for predicting and mitigating future viral threats. Despite next-generation sequencing's potential, challenges persist, notably sequencing artifacts leading to false iSNVs. We developed a workflow to enhance iSNV detection in large NGS libraries, using over 130 000 SARS-CoV-2 libraries to distinguish mutations from errors. Our approach integrates bioinformatics protocols, stringent quality control, and dimensionality reduction to tackle batch effects and improve mutation detection reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are represented within a two-dimensional space, enhancing clustering structure explanation based on genetic similarities. This workflow advances accurate intra-host mutation detection, facilitating a deeper understanding of viral diversity and evolution.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae145"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding viral genome evolution during host infection is crucial for grasping viral diversity and evolution. Analyzing intra-host single nucleotide variants (iSNVs) offers insights into new lineage emergence, which is important for predicting and mitigating future viral threats. Despite next-generation sequencing's potential, challenges persist, notably sequencing artifacts leading to false iSNVs. We developed a workflow to enhance iSNV detection in large NGS libraries, using over 130 000 SARS-CoV-2 libraries to distinguish mutations from errors. Our approach integrates bioinformatics protocols, stringent quality control, and dimensionality reduction to tackle batch effects and improve mutation detection reliability. Additionally, we pioneer the application of the PHATE visualization approach to genomic data and introduce a methodology that quantifies how related groups of data points are represented within a two-dimensional space, enhancing clustering structure explanation based on genetic similarities. This workflow advances accurate intra-host mutation detection, facilitating a deeper understanding of viral diversity and evolution.

利用大规模测序数据完善 SARS-CoV-2 宿主内变异。
了解宿主感染期间的病毒基因组进化对于把握病毒的多样性和进化至关重要。分析宿主内单核苷酸变体(iSNVs)可以深入了解新品系的出现,这对预测和减轻未来的病毒威胁非常重要。尽管下一代测序技术潜力巨大,但挑战依然存在,尤其是测序伪差导致的假iSNVs。我们开发了一种工作流程来提高大型 NGS 文库中 iSNV 的检测能力,利用超过 130,000 个 SARS-CoV-2 文库来区分突变和错误。我们的方法整合了生物信息学协议、严格的质量控制和降维技术,以解决批次效应并提高突变检测的可靠性。此外,我们开创性地将 PHATE 可视化方法应用于基因组数据,并引入一种方法来量化相关数据点群在二维空间中的表现形式,从而增强基于遗传相似性的聚类结构解释。这一工作流程提高了宿主内突变检测的准确性,有助于加深对病毒多样性和进化的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信