Ömer Ates, Garima Pandey, Athanasios Gousiopoulos, Theodoros G Soldatos
{"title":"A brief reference to AI-driven audible reality (AuRa) in open world: potential, applications, and evaluation.","authors":"Ömer Ates, Garima Pandey, Athanasios Gousiopoulos, Theodoros G Soldatos","doi":"10.3389/frai.2024.1424371","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments on artificial intelligence (AI) and machine learning (ML) techniques are expected to have significant impact on public health in several ways. Indeed, modern AI/ML methods have been applied on multiple occasions on topics ranging from drug discovery and disease diagnostics to personalized medicine, medical imaging, and healthcare operations. While such developments may improve several quality-of-life aspects (such as access to health services and education), it is important considering that some individuals may face more challenges, particularly in extreme or emergency situations. In this work, we focus on utilizing AI/ML components to support scenarios when visual impairment or other limitations hinder the ability to interpret the world in this way. Specifically, we discuss the potential and the feasibility of automatically transferring key visual information into audio communication, in different languages and in real-time-a setting which we name '<i>au</i>dible <i>r</i>e<i>a</i>lity' (AuRa). We provide a short guide to practical options currently available for implementing similar solutions and summarize key aspects for evaluating their scope. Finally, we discuss diverse settings and functionalities that AuRA applications could have in terms of broader impact, from a social and public health context, and invite the community to further such digital solutions and perspectives soon.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1424371"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1424371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments on artificial intelligence (AI) and machine learning (ML) techniques are expected to have significant impact on public health in several ways. Indeed, modern AI/ML methods have been applied on multiple occasions on topics ranging from drug discovery and disease diagnostics to personalized medicine, medical imaging, and healthcare operations. While such developments may improve several quality-of-life aspects (such as access to health services and education), it is important considering that some individuals may face more challenges, particularly in extreme or emergency situations. In this work, we focus on utilizing AI/ML components to support scenarios when visual impairment or other limitations hinder the ability to interpret the world in this way. Specifically, we discuss the potential and the feasibility of automatically transferring key visual information into audio communication, in different languages and in real-time-a setting which we name 'audible reality' (AuRa). We provide a short guide to practical options currently available for implementing similar solutions and summarize key aspects for evaluating their scope. Finally, we discuss diverse settings and functionalities that AuRA applications could have in terms of broader impact, from a social and public health context, and invite the community to further such digital solutions and perspectives soon.