Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid
{"title":"Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks.","authors":"Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid","doi":"10.1177/0734242X241294247","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (<i>R</i>²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241294247"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241294247","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (R²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.