Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks.

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid
{"title":"Optimizing food waste anaerobic digestion in Kuwait: Experimental insights and empirical modelling using artificial neural networks.","authors":"Jean H El Achkar, Suad Al Radhwan, Ahmed M Al-Otaibi, Abdul Md Mazid","doi":"10.1177/0734242X241294247","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (<i>R</i>²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241294247"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241294247","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates, for the first time, the anaerobic digestion of food waste in Kuwait to optimize methane production through a combination of artificial neural network (ANN) modelling and continuous reactor experiments. The ANN model, utilizing eight hidden neurons and a 70-20-10 split for training, validation and testing sets, yielded mean squared error values of 0.0056, 0.0048 and 0.0059 and coefficient of determination (R²) values of 0.9942, 0.9986 and 0.9892, respectively. Methane percentages in biogas were predicted using six parameters: biomass type, pH, organic loading rate (OLR), hydraulic retention time (HRT), temperature and reactor volume. To validate the ANN results, continuous reactor experiments were conducted under an OLR of 3 kg VS m⁻³ d⁻¹ and HRT of 20 days at varying temperatures (35°C, 40°C, 45°C, 50°C and 55°C). The experiments demonstrated optimal methane production in the mesophilic range, with ANN predictions closely aligning with experimental data up to 45°C. However, deviations were observed at higher temperatures, particularly under thermophilic conditions beyond 50°C. This study provides novel insights into waste-to-energy initiatives in Kuwait and highlights the potential of integrating computational models with empirical data to enhance biogas production processes.

优化科威特的厨余厌氧发酵:利用人工神经网络的实验见解和经验建模。
本研究首次通过人工神经网络(ANN)建模和连续反应器实验相结合的方法,对科威特餐厨垃圾厌氧消化进行了调查,以优化甲烷生产。人工神经网络模型采用 8 个隐藏神经元,训练集、验证集和测试集按 70-20-10 的比例分配,平均平方误差值分别为 0.0056、0.0048 和 0.0059,决定系数 (R²) 分别为 0.9942、0.9986 和 0.9892。通过生物质类型、pH 值、有机负荷率 (OLR)、水力停留时间 (HRT)、温度和反应器容积这六个参数,预测了沼气中甲烷的百分比。为了验证 ANN 的结果,在不同温度(35°C、40°C、45°C、50°C 和 55°C)条件下进行了连续反应器实验,OLR 为 3 kg VS m-³ d-¹,HRT 为 20 天。实验表明,在中嗜酸性范围内甲烷产量最佳,ANN 预测值与 45°C 以下的实验数据非常吻合。然而,在更高温度下,特别是在超过 50°C 的嗜热条件下,出现了偏差。这项研究为科威特的废物变能源计划提供了新的见解,并强调了将计算模型与经验数据相结合以提高沼气生产工艺的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信