{"title":"Inhibiting SIRT2 Attenuates Sepsis-Induced Acute Kidney Injury via FOXO1 Acetylation-Mediated Autophagy Activation.","authors":"Binmei Yu, Lijun Weng, Jiaxin Li, Tingjie Wang, Weihuang Qiu, Yuying Li, Menglu Shi, Bo Lin, Xianzhong Lin, Zhongqing Chen, Zhenhua Zeng, Youguang Gao","doi":"10.1097/SHK.0000000000002505","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Sepsis-associated acute kidney injury (SAKI), a common complication in intensive care units (ICUs), is linked to high morbidity and mortality. Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, has been shown to have distinct effects on autophagy regulation compared to other sirtuins, but its role in SAKI remains unclear. This study explored the potential of SIRT2 as a therapeutic target for SAKI. We found that inhibition of SIRT2 with the antagonist AGK2 improved the survival of septic mice. SIRT2 inhibition reduced kidney injury, as indicated by lower levels of KIM-1, NGAL, serum creatinine (Scr), blood urea nitrogen (BUN), and proinflammatory cytokines following cecal ligation and puncture (CLP). Pretreatment with AGK2 in septic mice increased autophagosome and autolysosome formation in renal tubular epithelial cells (RTECs) and upregulated LC3 II expression in the renal cortex. Consistent with in vivo findings, SIRT2 gene silencing promoted autophagy in LPS-treated HK-2 cells, whereas SIRT2 overexpression inhibited it. Mechanistically, SIRT2 inhibition increased FOXO1 acetylation, inducing its nuclear-to-cytoplasmic translocation, which promoted kidney autophagy and alleviated SAKI. Our study suggests SIRT2 as a potential target for SAKI therapy.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002505","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Sepsis-associated acute kidney injury (SAKI), a common complication in intensive care units (ICUs), is linked to high morbidity and mortality. Sirtuin 2 (SIRT2), an NAD+-dependent deacetylase, has been shown to have distinct effects on autophagy regulation compared to other sirtuins, but its role in SAKI remains unclear. This study explored the potential of SIRT2 as a therapeutic target for SAKI. We found that inhibition of SIRT2 with the antagonist AGK2 improved the survival of septic mice. SIRT2 inhibition reduced kidney injury, as indicated by lower levels of KIM-1, NGAL, serum creatinine (Scr), blood urea nitrogen (BUN), and proinflammatory cytokines following cecal ligation and puncture (CLP). Pretreatment with AGK2 in septic mice increased autophagosome and autolysosome formation in renal tubular epithelial cells (RTECs) and upregulated LC3 II expression in the renal cortex. Consistent with in vivo findings, SIRT2 gene silencing promoted autophagy in LPS-treated HK-2 cells, whereas SIRT2 overexpression inhibited it. Mechanistically, SIRT2 inhibition increased FOXO1 acetylation, inducing its nuclear-to-cytoplasmic translocation, which promoted kidney autophagy and alleviated SAKI. Our study suggests SIRT2 as a potential target for SAKI therapy.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.