External evaluation of neonatal vancomycin population pharmacokinetic models: Moving from first-order equations to Bayesian-guided therapeutic monitoring.

IF 2.9 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Pharmacotherapy Pub Date : 2024-11-15 DOI:10.1002/phar.4623
Mathieu Blouin, Marie-Élaine Métras, Camille Gaudreault, Marie-Hélène Dubé, Marie-Christine Boulanger, Karine Cloutier, Mehdi El Hassani, Aysenur Yaliniz, Isabelle Viel-Thériault, Amélie Marsot
{"title":"External evaluation of neonatal vancomycin population pharmacokinetic models: Moving from first-order equations to Bayesian-guided therapeutic monitoring.","authors":"Mathieu Blouin, Marie-Élaine Métras, Camille Gaudreault, Marie-Hélène Dubé, Marie-Christine Boulanger, Karine Cloutier, Mehdi El Hassani, Aysenur Yaliniz, Isabelle Viel-Thériault, Amélie Marsot","doi":"10.1002/phar.4623","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Guidelines for vancomycin therapeutic monitoring recommend using a Bayesian approach with a population pharmacokinetic model to estimate the 24 h area under the concentration-time curve over first-order equations. Thus, we performed an external evaluation of population pharmacokinetic models of vancomycin in neonates and compared Bayesian results with those observed in clinical practice via pharmacokinetic equations to improve therapeutic monitoring by proposing optimized initial dosing nomograms and assessing the feasibility of reduced blood sampling strategies using the most predictive models.</p><p><strong>Methods: </strong>Models were identified from the literature and evaluated via an external neonatal population. A priori predictive performance was first assessed by prediction-based diagnostics, then by simulation-based diagnostics and a posteriori analyses only if deemed satisfactory; model-informed vancomycin exposure was also compared with reference first-order pharmacokinetic equations. The best-performing models were ultimately subjected to Monte Carlo simulations to develop new initial dosing nomograms offering the highest probability of achieving therapeutic target.</p><p><strong>Results: </strong>A total of 28 population pharmacokinetic models were evaluated in the external dataset, which includes 72 neonates and 380 vancomycin concentrations. Eleven models had an adequate predictive performance with bias ≤ ± 15% and imprecision <math> <semantics><mrow><mo>≤</mo></mrow> <annotation>$$ \\le $$</annotation></semantics> </math> 30%, while the Bayesian approach yielded over 75% agreement with reference exposure values in most cases. Nonetheless, Capparelli et al. and Mehrotra et al. models performed the best overall, showing the lowest imprecisions of 16.8% and 16.9%, respectively; both models recommended higher dosage regimens than the theoretical nomogram currently applied to favor therapeutic target attainment.</p><p><strong>Discussion: </strong>We externally evaluated numerous neonatal population pharmacokinetic models of vancomycin and used the most predictive ones to advocate new initial dosing nomograms. Clinical implementation of the Bayesian approach could reduce the time needed to reach therapeutic target and limit the number of blood samples in newborns compared with traditional pharmacokinetic equations.</p>","PeriodicalId":20013,"journal":{"name":"Pharmacotherapy","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/phar.4623","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Guidelines for vancomycin therapeutic monitoring recommend using a Bayesian approach with a population pharmacokinetic model to estimate the 24 h area under the concentration-time curve over first-order equations. Thus, we performed an external evaluation of population pharmacokinetic models of vancomycin in neonates and compared Bayesian results with those observed in clinical practice via pharmacokinetic equations to improve therapeutic monitoring by proposing optimized initial dosing nomograms and assessing the feasibility of reduced blood sampling strategies using the most predictive models.

Methods: Models were identified from the literature and evaluated via an external neonatal population. A priori predictive performance was first assessed by prediction-based diagnostics, then by simulation-based diagnostics and a posteriori analyses only if deemed satisfactory; model-informed vancomycin exposure was also compared with reference first-order pharmacokinetic equations. The best-performing models were ultimately subjected to Monte Carlo simulations to develop new initial dosing nomograms offering the highest probability of achieving therapeutic target.

Results: A total of 28 population pharmacokinetic models were evaluated in the external dataset, which includes 72 neonates and 380 vancomycin concentrations. Eleven models had an adequate predictive performance with bias ≤ ± 15% and imprecision $$ \le $$ 30%, while the Bayesian approach yielded over 75% agreement with reference exposure values in most cases. Nonetheless, Capparelli et al. and Mehrotra et al. models performed the best overall, showing the lowest imprecisions of 16.8% and 16.9%, respectively; both models recommended higher dosage regimens than the theoretical nomogram currently applied to favor therapeutic target attainment.

Discussion: We externally evaluated numerous neonatal population pharmacokinetic models of vancomycin and used the most predictive ones to advocate new initial dosing nomograms. Clinical implementation of the Bayesian approach could reduce the time needed to reach therapeutic target and limit the number of blood samples in newborns compared with traditional pharmacokinetic equations.

新生儿万古霉素群体药代动力学模型的外部评估:从一阶方程到贝叶斯指导的治疗监测。
简介:万古霉素治疗监测指南建议使用贝叶斯方法和群体药代动力学模型来估算 24 小时浓度-时间曲线下的面积,而不是一阶方程。因此,我们对万古霉素在新生儿中的群体药代动力学模型进行了外部评估,并将贝叶斯方法得出的结果与临床实践中通过药代动力学方程观察到的结果进行了比较,以便通过提出优化的初始剂量提名图和评估使用最具预测性的模型减少血液采样策略的可行性来改进治疗监测:方法:从文献中确定模型,并通过外部新生儿群体进行评估。首先通过基于预测的诊断评估先验预测性能,然后通过基于模拟的诊断评估先验预测性能,只有在认为令人满意的情况下才进行后验分析;还将模型显示的万古霉素暴露量与参考的一阶药代动力学方程进行了比较。最终对表现最佳的模型进行蒙特卡洛模拟,以制定新的初始剂量提名图,提供实现治疗目标的最高概率:结果:外部数据集共评估了 28 个群体药代动力学模型,其中包括 72 名新生儿和 380 个万古霉素浓度。有 11 个模型具有足够的预测性能,偏差≤ ± 15%,不精确度≤ $ \le $ 30%,而贝叶斯方法在大多数情况下与参考暴露值的一致性超过 75%。尽管如此,Capparelli 等人的模型和 Mehrotra 等人的模型总体上表现最好,不精确度最低,分别为 16.8% 和 16.9%;这两个模型推荐的剂量方案均高于目前应用的理论提名图,以利于达到治疗目标:讨论:我们对万古霉素的众多新生儿群体药代动力学模型进行了外部评估,并利用最具预测性的模型提出了新的初始剂量提名图。与传统的药代动力学方程相比,贝叶斯方法的临床应用可缩短达到治疗目标所需的时间,并限制新生儿血液样本的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacotherapy
Pharmacotherapy 医学-药学
CiteScore
7.80
自引率
2.40%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Pharmacotherapy is devoted to publication of original research articles on all aspects of human pharmacology and review articles on drugs and drug therapy. The Editors and Editorial Board invite original research reports on pharmacokinetic, bioavailability, and drug interaction studies, clinical trials, investigations of specific pharmacological properties of drugs, and related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信