{"title":"A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.","authors":"Yingjie Qiu, Mingyue Li","doi":"10.1002/pst.2451","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the \"more is better\" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2451","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the "more is better" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.