Mitigating bias in radiology: The promise of topological data analysis and simplicial complexes.

Q2 Medicine
Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson
{"title":"Mitigating bias in radiology: The promise of topological data analysis and simplicial complexes.","authors":"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson","doi":"10.18632/oncotarget.28668","DOIUrl":null,"url":null,"abstract":"<p><p>Topological Data Analysis (TDA) and simplicial complexes offer a novel approach to address biases in AI-assisted radiology. By capturing complex structures, n-way interactions, and geometric relationships in medical images, TDA enhances feature extraction, improves representation robustness, and increases interpretability. This mathematical framework has the potential to significantly improve the accuracy and fairness of radiological assessments, paving the way for more equitable patient care.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"782-783"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Topological Data Analysis (TDA) and simplicial complexes offer a novel approach to address biases in AI-assisted radiology. By capturing complex structures, n-way interactions, and geometric relationships in medical images, TDA enhances feature extraction, improves representation robustness, and increases interpretability. This mathematical framework has the potential to significantly improve the accuracy and fairness of radiological assessments, paving the way for more equitable patient care.

减少放射学中的偏差:拓扑数据分析和简单复合物的前景。
拓扑数据分析(TDA)和简单复合物为解决人工智能辅助放射学中的偏差问题提供了一种新方法。通过捕捉医学影像中的复杂结构、n 向相互作用和几何关系,拓扑数据分析增强了特征提取,提高了表示的鲁棒性,并增加了可解释性。这一数学框架有望显著提高放射评估的准确性和公平性,为更公平的患者护理铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信