Ruiyao Zhu, Yu Zhang, Xiaohong Wang, Benjamin D Liu, Debabrata Chowdhury, Zhixin Li, Mingliang Pan, Tianqing Peng, Jing Chen, Wei Huang, Liying Zhan, Guo-Chang Fan
{"title":"Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway.","authors":"Ruiyao Zhu, Yu Zhang, Xiaohong Wang, Benjamin D Liu, Debabrata Chowdhury, Zhixin Li, Mingliang Pan, Tianqing Peng, Jing Chen, Wei Huang, Liying Zhan, Guo-Chang Fan","doi":"10.1186/s10020-024-00959-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored.</p><p><strong>Methods: </strong>BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis.</p><p><strong>Results: </strong>LGG-derived EVs (BEV<sup>LGG</sup>) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEV<sup>LGG</sup> collected from pH8 culture condition (BEV<sup>pH8</sup>) exhibited the strongest capacity of phagocytosis, compared with BEV<sup>pH5</sup> and BEV<sup>pH6.5</sup>. Treatment of septic mice with BEV<sup>pH8</sup> significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEV<sup>pH8</sup>-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEV<sup>pH8</sup>-mediated phagocytosis, compared to controls.</p><p><strong>Conclusions: </strong>This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"216"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566284/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00959-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored.
Methods: BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis.
Results: LGG-derived EVs (BEVLGG) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEVLGG collected from pH8 culture condition (BEVpH8) exhibited the strongest capacity of phagocytosis, compared with BEVpH5 and BEVpH6.5. Treatment of septic mice with BEVpH8 significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEVpH8-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEVpH8-mediated phagocytosis, compared to controls.
Conclusions: This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.