Daan J. Geijs , Lisa M. Hillen , Stephan Dooper , Veronique Winnepenninckx , Vamsi Varra , David R. Carr , Kathryn T. Shahwan , Geert Litjens , Avital Amir
{"title":"Weakly Supervised Classification of Mohs Surgical Sections Using Artificial Intelligence","authors":"Daan J. Geijs , Lisa M. Hillen , Stephan Dooper , Veronique Winnepenninckx , Vamsi Varra , David R. Carr , Kathryn T. Shahwan , Geert Litjens , Avital Amir","doi":"10.1016/j.modpat.2024.100653","DOIUrl":null,"url":null,"abstract":"<div><div>Basal cell carcinoma (BCC) is the most frequently diagnosed form of skin cancer, and its incidence continues to rise, particularly among older individuals. This trend puts a significant strain on health care systems, especially in terms of histopathologic diagnostics required for Mohs micrographic surgery (MMS), which is used to treat BCC in sensitive locations to minimize tissue loss. This study aims to address the challenges in BCC detection within MMS whole-slide images by developing and evaluating a deep learning model that bridges weakly supervised learning with interpretable segmentation-based methods through attention maps. Utilizing data sets from 2 medical centers, the model demonstrated an average area under the receiver operating characteristic curve (AUC) of 0.958 on internal testing and an AUC of 0.934 on an independent third external data set despite no fine-tuning or preprocessing for the latter. Attention maps provided insights into the model’s decision making, highlighting critical regions for slide-level classification. The sensitivity of the attention maps in localizing tumor regions was 0.853 when no filtering was applied and gave 8 revision false positives per slide on average and was reduced to an average of 2 false positives per slide with a sensitivity of 0.873 when detections smaller than 200 μm were removed from the attention maps. These findings indicate that the deep learning model is highly effective in detecting BCC in MMS whole-slide images, with robust performance across different data sets and conditions. The use of attention maps enhances the model’s interpretability, making it a promising tool for aiding dermatopathologists and MMS surgeons.</div></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":"38 2","pages":"Article 100653"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224002333","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Basal cell carcinoma (BCC) is the most frequently diagnosed form of skin cancer, and its incidence continues to rise, particularly among older individuals. This trend puts a significant strain on health care systems, especially in terms of histopathologic diagnostics required for Mohs micrographic surgery (MMS), which is used to treat BCC in sensitive locations to minimize tissue loss. This study aims to address the challenges in BCC detection within MMS whole-slide images by developing and evaluating a deep learning model that bridges weakly supervised learning with interpretable segmentation-based methods through attention maps. Utilizing data sets from 2 medical centers, the model demonstrated an average area under the receiver operating characteristic curve (AUC) of 0.958 on internal testing and an AUC of 0.934 on an independent third external data set despite no fine-tuning or preprocessing for the latter. Attention maps provided insights into the model’s decision making, highlighting critical regions for slide-level classification. The sensitivity of the attention maps in localizing tumor regions was 0.853 when no filtering was applied and gave 8 revision false positives per slide on average and was reduced to an average of 2 false positives per slide with a sensitivity of 0.873 when detections smaller than 200 μm were removed from the attention maps. These findings indicate that the deep learning model is highly effective in detecting BCC in MMS whole-slide images, with robust performance across different data sets and conditions. The use of attention maps enhances the model’s interpretability, making it a promising tool for aiding dermatopathologists and MMS surgeons.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.