{"title":"The Impact of the Histone Deacetylase Inhibitor-Sodium Butyrate on Complement-Mediated Synapse Loss in a Rat Model of Neonatal Hypoxia-Ischemia.","authors":"Karolina Ziabska, Magdalena Gewartowska, Malgorzata Frontczak-Baniewicz, Joanna Sypecka, Malgorzata Ziemka-Nalecz","doi":"10.1007/s12035-024-04591-w","DOIUrl":null,"url":null,"abstract":"<p><p>Perinatal asphyxia is one of the most important causes of morbidity and mortality in newborns. One of the key pathogenic factors in hypoxic-ischemic (HI) brain injury is the inflammatory reaction including complement system activation. Over-activated complement stimulates cells to release inflammatory molecules and is involved in the post-ischemic degradation of synaptic connections. On the other hand, complement is also involved in regenerative processes. The histone deacetylase inhibitor (HDACi)-sodium butyrate (SB)-provides reduction of inflammation by decreasing the expression of the proinflammatory factors. The main purpose of this study was to examine the effect of SB treatment on complement activation and synapse elimination after HI. Neonatal HI was induced in Wistar rats pups by unilateral ligation of the common carotid artery followed by 60-min hypoxia (7.6% O2). SB (300 mg/kg) was administered on a 5-day regimen. Our study has shown decreased levels of synapsin I, synaptophysin, and PSD-95 in the hypoxic-ischemic hemisphere, indicating synaptic loss after neonatal HI. Transmission electron microscopy revealed injury of the synaptic structures in the brain after HI. SB treatment increased the level of the synaptic proteins, improved tissue ultrastructure, and reduced degradation of the synapses. Neonatal HI induced mRNA expression of the complement C1q, C3, C5, and C9, and their receptors C3aR and C5aR. The effect of SB was different depending on the time after induction of hypoxic-ischemic damage. Our study demonstrated that neuroprotective effect of SB may be related to the modulation of complement activity after HI brain injury.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04591-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perinatal asphyxia is one of the most important causes of morbidity and mortality in newborns. One of the key pathogenic factors in hypoxic-ischemic (HI) brain injury is the inflammatory reaction including complement system activation. Over-activated complement stimulates cells to release inflammatory molecules and is involved in the post-ischemic degradation of synaptic connections. On the other hand, complement is also involved in regenerative processes. The histone deacetylase inhibitor (HDACi)-sodium butyrate (SB)-provides reduction of inflammation by decreasing the expression of the proinflammatory factors. The main purpose of this study was to examine the effect of SB treatment on complement activation and synapse elimination after HI. Neonatal HI was induced in Wistar rats pups by unilateral ligation of the common carotid artery followed by 60-min hypoxia (7.6% O2). SB (300 mg/kg) was administered on a 5-day regimen. Our study has shown decreased levels of synapsin I, synaptophysin, and PSD-95 in the hypoxic-ischemic hemisphere, indicating synaptic loss after neonatal HI. Transmission electron microscopy revealed injury of the synaptic structures in the brain after HI. SB treatment increased the level of the synaptic proteins, improved tissue ultrastructure, and reduced degradation of the synapses. Neonatal HI induced mRNA expression of the complement C1q, C3, C5, and C9, and their receptors C3aR and C5aR. The effect of SB was different depending on the time after induction of hypoxic-ischemic damage. Our study demonstrated that neuroprotective effect of SB may be related to the modulation of complement activity after HI brain injury.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.