Chong Li, Marie R Culhane, Declan C Schroeder, Maxim C-J Cheeran, Lucina Galina Pantoja, Micah L Jansen, Montserrat Torremorell
{"title":"Quantifying the impact of vaccination on transmission and diversity of influenza A variants in pigs.","authors":"Chong Li, Marie R Culhane, Declan C Schroeder, Maxim C-J Cheeran, Lucina Galina Pantoja, Micah L Jansen, Montserrat Torremorell","doi":"10.1128/jvi.01245-24","DOIUrl":null,"url":null,"abstract":"<p><p>Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model. We found that the seeder pigs harbored more diversified virus populations than the contact pigs. Among contact pigs, H3N2 and H1N1 viruses recovered from pigs vaccinated with a single dose of an unmatched modified live vaccine generally accumulated more extensive genetic mutations than non-vaccinated pigs. Furthermore, the non-sterilizing immunity elicited by the single-dose-modified live vaccine may have exerted positive selection on H1 antigenic regions as we detected significantly higher nonsynonymous but lower synonymous evolutionary rates in H1 antigenic regions than non-antigenic regions. In addition, we observed that the vaccinated pigs shared significantly less proportion of H3N2 variants with seeder pigs than unvaccinated pigs. These results indicated that vaccination might reduce the impact of transmitted influenza variants on the overall diversity of IAV populations harbored in recipient pigs and that within-host genetic selection of IAV is more likely to occur in pigs vaccinated with improperly matched vaccines.IMPORTANCEUnderstanding how vaccination shapes the diversity of influenza variants that transmit and propagate among pigs is essential for designing effective IAV surveillance and control programs. Current knowledge about the transmission of IAV variants has primarily been explored in humans during natural infection. However, how immunity elicited by improperly matched vaccines affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs at the whole-genome level is unknown. We analyzed IAV sequences from samples collected daily from experimentally infected pigs vaccinated with various protocols in a field-represented IAV co-infection model. We found that vaccine-induced non-sterilizing immunity might promote genetic variation on the IAV genome and drive positive selection at antigenic sites during infection. In addition, a smaller proportion of H3N2 viral variants were shared between seeder pigs and vaccinated pigs, suggesting the influence of vaccination on shaping the virus genomic diversity in recipient pigs during the transmission events.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0124524"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01245-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model. We found that the seeder pigs harbored more diversified virus populations than the contact pigs. Among contact pigs, H3N2 and H1N1 viruses recovered from pigs vaccinated with a single dose of an unmatched modified live vaccine generally accumulated more extensive genetic mutations than non-vaccinated pigs. Furthermore, the non-sterilizing immunity elicited by the single-dose-modified live vaccine may have exerted positive selection on H1 antigenic regions as we detected significantly higher nonsynonymous but lower synonymous evolutionary rates in H1 antigenic regions than non-antigenic regions. In addition, we observed that the vaccinated pigs shared significantly less proportion of H3N2 variants with seeder pigs than unvaccinated pigs. These results indicated that vaccination might reduce the impact of transmitted influenza variants on the overall diversity of IAV populations harbored in recipient pigs and that within-host genetic selection of IAV is more likely to occur in pigs vaccinated with improperly matched vaccines.IMPORTANCEUnderstanding how vaccination shapes the diversity of influenza variants that transmit and propagate among pigs is essential for designing effective IAV surveillance and control programs. Current knowledge about the transmission of IAV variants has primarily been explored in humans during natural infection. However, how immunity elicited by improperly matched vaccines affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs at the whole-genome level is unknown. We analyzed IAV sequences from samples collected daily from experimentally infected pigs vaccinated with various protocols in a field-represented IAV co-infection model. We found that vaccine-induced non-sterilizing immunity might promote genetic variation on the IAV genome and drive positive selection at antigenic sites during infection. In addition, a smaller proportion of H3N2 viral variants were shared between seeder pigs and vaccinated pigs, suggesting the influence of vaccination on shaping the virus genomic diversity in recipient pigs during the transmission events.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.