Liam S P Lawrence, Pejman J Maralani, Sunit Das, Arjun Sahgal, Greg J Stanisz, Angus Z Lau
{"title":"Magnetic resonance imaging techniques for monitoring glioma response to chemoradiotherapy.","authors":"Liam S P Lawrence, Pejman J Maralani, Sunit Das, Arjun Sahgal, Greg J Stanisz, Angus Z Lau","doi":"10.1007/s11060-024-04856-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Treatment response assessment for gliomas currently uses changes in tumour size as measured with T<sub>1</sub>- and T<sub>2</sub>-weighted MRI. However, changes in tumour size may occur many weeks after therapy completion and are confounded by radiation treatment effects. Advanced MRI techniques sensitive to tumour physiology may provide complementary information to evaluate tumour response at early timepoints during therapy. The objective of this review is to provide a summary of the history and current knowledge regarding advanced MRI techniques for early treatment response evaluation in glioma.</p><p><strong>Methods: </strong>The literature survey included perfusion MRI, diffusion-weighted imaging, quantitative magnetization transfer imaging, and chemical exchange transfer MRI. Select articles spanning the history of each technique as applied to treatment response evaluation in glioma were chosen. This report is a narrative review, not formally systematic.</p><p><strong>Results: </strong>Chemical exchange saturation transfer imaging potentially offers the earliest method to detect tumour response due to changes in metabolism. Diffusion-weighted imaging is sensitive to changes in tumour cellularity later during radiotherapy and is prognostic for progression-free and overall survival. Substantial evidence suggests that perfusion MRI can differentiate between tumour recurrence and treatment effect, but consensus regarding acquisition, processing, and interpretation is still lacking. Magnetization transfer imaging shows promise for detecting subtle white matter damage which could indicate tumour invasion, but more research in this area is needed.</p><p><strong>Conclusion: </strong>Advanced MRI techniques show potential for early treatment response assessment, but each technique alone lacks specificity. Multiparametric imaging may be necessary to aid biological interpretation and enable treatment guidance.</p>","PeriodicalId":16425,"journal":{"name":"Journal of Neuro-Oncology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-024-04856-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Treatment response assessment for gliomas currently uses changes in tumour size as measured with T1- and T2-weighted MRI. However, changes in tumour size may occur many weeks after therapy completion and are confounded by radiation treatment effects. Advanced MRI techniques sensitive to tumour physiology may provide complementary information to evaluate tumour response at early timepoints during therapy. The objective of this review is to provide a summary of the history and current knowledge regarding advanced MRI techniques for early treatment response evaluation in glioma.
Methods: The literature survey included perfusion MRI, diffusion-weighted imaging, quantitative magnetization transfer imaging, and chemical exchange transfer MRI. Select articles spanning the history of each technique as applied to treatment response evaluation in glioma were chosen. This report is a narrative review, not formally systematic.
Results: Chemical exchange saturation transfer imaging potentially offers the earliest method to detect tumour response due to changes in metabolism. Diffusion-weighted imaging is sensitive to changes in tumour cellularity later during radiotherapy and is prognostic for progression-free and overall survival. Substantial evidence suggests that perfusion MRI can differentiate between tumour recurrence and treatment effect, but consensus regarding acquisition, processing, and interpretation is still lacking. Magnetization transfer imaging shows promise for detecting subtle white matter damage which could indicate tumour invasion, but more research in this area is needed.
Conclusion: Advanced MRI techniques show potential for early treatment response assessment, but each technique alone lacks specificity. Multiparametric imaging may be necessary to aid biological interpretation and enable treatment guidance.
期刊介绍:
The Journal of Neuro-Oncology is a multi-disciplinary journal encompassing basic, applied, and clinical investigations in all research areas as they relate to cancer and the central nervous system. It provides a single forum for communication among neurologists, neurosurgeons, radiotherapists, medical oncologists, neuropathologists, neurodiagnosticians, and laboratory-based oncologists conducting relevant research. The Journal of Neuro-Oncology does not seek to isolate the field, but rather to focus the efforts of many disciplines in one publication through a format which pulls together these diverse interests. More than any other field of oncology, cancer of the central nervous system requires multi-disciplinary approaches. To alleviate having to scan dozens of journals of cell biology, pathology, laboratory and clinical endeavours, JNO is a periodical in which current, high-quality, relevant research in all aspects of neuro-oncology may be found.