Chunlai Qin, Chang Li, Ming Ding, Yi Wang, Yaya Li, Yajun Wang, Xubo Wang, Chunyang Guo
{"title":"The regulation of ovarian degeneration in Pampus argenteus by heat shock protein genes under low-temperature stress.","authors":"Chunlai Qin, Chang Li, Ming Ding, Yi Wang, Yaya Li, Yajun Wang, Xubo Wang, Chunyang Guo","doi":"10.1111/jfb.15985","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is a crucial environmental factor that significantly impacts the growth, development, metabolism, and physiological functions of fish. To study the effects of low-temperature on the gonadal development of silver pomfret (Pampus argenteus), a cold period by gradually lowering the water temperature from 18°C to 9°C was simulated. The results showed that hsp70, hsp90a, and hsp90b were widely expressed in the tissues of P. argenteus, with hsp70 primarily expressed in the pituitary, hsp90a and hsp90b mainly expressed in the lateral. The hsps were involved in the development process of P. argenteus from 1 to 27 days post-hatching (dph). The expression levels of hsp70 and hsp90b were highest at 17 dph, while the levels of hsp90a were at 25 dph. Under the condition of 9°C, regressed oocyte were observed in the ovaries, the oocyte diameter significantly decreased, and the ovaries degenerated 100% after low-temperature stress. The expression levels of hsps in the ovaries were significantly higher than in the control group, while the expression levels in the testes were significantly lower than in the control group. Taken together, hsps may regulate the ovarian degeneration under low-temperature stress. Male fish rapidly completed meiosis and maintained the testes in the prophase of meiosis to resist the low-temperature stress.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.15985","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature is a crucial environmental factor that significantly impacts the growth, development, metabolism, and physiological functions of fish. To study the effects of low-temperature on the gonadal development of silver pomfret (Pampus argenteus), a cold period by gradually lowering the water temperature from 18°C to 9°C was simulated. The results showed that hsp70, hsp90a, and hsp90b were widely expressed in the tissues of P. argenteus, with hsp70 primarily expressed in the pituitary, hsp90a and hsp90b mainly expressed in the lateral. The hsps were involved in the development process of P. argenteus from 1 to 27 days post-hatching (dph). The expression levels of hsp70 and hsp90b were highest at 17 dph, while the levels of hsp90a were at 25 dph. Under the condition of 9°C, regressed oocyte were observed in the ovaries, the oocyte diameter significantly decreased, and the ovaries degenerated 100% after low-temperature stress. The expression levels of hsps in the ovaries were significantly higher than in the control group, while the expression levels in the testes were significantly lower than in the control group. Taken together, hsps may regulate the ovarian degeneration under low-temperature stress. Male fish rapidly completed meiosis and maintained the testes in the prophase of meiosis to resist the low-temperature stress.
期刊介绍:
The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.