Samuel D Rusu, Blake R Smith, Joel J St-Aubin, Nathan Shaffer, Daniel Ellis Hyer
{"title":"Surrogate gating strategies for the Elekta Unity MR-Linac gating system.","authors":"Samuel D Rusu, Blake R Smith, Joel J St-Aubin, Nathan Shaffer, Daniel Ellis Hyer","doi":"10.1002/acm2.14566","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>MRI-guided adaptive radiotherapy can directly monitor the anatomical positioning of the intended target during treatment with no additional imaging dose. Elekta has recently released its comprehensive motion management (CMM) solution that enables automatic radiation beam-gating on the Unity MR-Linac. Easily visualized targets that are distinct from the surrounding anatomy can be used to drive automatic gating decisions from the MRI cine imaging. However, poorly visualized targets can compromise the tracking and gating capabilities and may require surrogate tracking structures. This work presents strategies to generate robust tracking surrogates for a variety of treatment sites, enabling a wider application of CMM.</p><p><strong>Methods: </strong>Surrogate tracking strategies were developed from a cohort of patients treated using the CMM system on the Unity MR-Linac for treatment sites of the lung, pancreas, liver, and prostate. These sites posed challenging visualization or tracking of the primary target thereby compromising the tracking accuracy. Surrogate structures were developed using site-specific strategies to improve the imaging textured detail within the tracking volume while avoiding the dynamic overwhelming hypo- or hyper-intense anatomical structures. These surrogate volumes were applied within the anatomical positioning monitoring system as a proxy that drove the CMM gating decisions on the treatment unit.</p><p><strong>Results: </strong>Robust site-specific surrogate structures were developed. Surrogate tracking structures for centrally located thoracic targets were created by expanding the target peripherally away from the heart and great vessels and into the lung. Pancreas surrogates required a vertically expanded column intersecting with the inferior liver edge. For the liver and prostate, surrogate structures consisted of a uniform expansion of the target, with liver surrogates intersecting the proximal liver edge or diaphragm while avoiding nearby ribs.</p><p><strong>Conclusion: </strong>These surrogate strategies have enabled the gating of complex moving targets among different treatment sites at our institution.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14566"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: MRI-guided adaptive radiotherapy can directly monitor the anatomical positioning of the intended target during treatment with no additional imaging dose. Elekta has recently released its comprehensive motion management (CMM) solution that enables automatic radiation beam-gating on the Unity MR-Linac. Easily visualized targets that are distinct from the surrounding anatomy can be used to drive automatic gating decisions from the MRI cine imaging. However, poorly visualized targets can compromise the tracking and gating capabilities and may require surrogate tracking structures. This work presents strategies to generate robust tracking surrogates for a variety of treatment sites, enabling a wider application of CMM.
Methods: Surrogate tracking strategies were developed from a cohort of patients treated using the CMM system on the Unity MR-Linac for treatment sites of the lung, pancreas, liver, and prostate. These sites posed challenging visualization or tracking of the primary target thereby compromising the tracking accuracy. Surrogate structures were developed using site-specific strategies to improve the imaging textured detail within the tracking volume while avoiding the dynamic overwhelming hypo- or hyper-intense anatomical structures. These surrogate volumes were applied within the anatomical positioning monitoring system as a proxy that drove the CMM gating decisions on the treatment unit.
Results: Robust site-specific surrogate structures were developed. Surrogate tracking structures for centrally located thoracic targets were created by expanding the target peripherally away from the heart and great vessels and into the lung. Pancreas surrogates required a vertically expanded column intersecting with the inferior liver edge. For the liver and prostate, surrogate structures consisted of a uniform expansion of the target, with liver surrogates intersecting the proximal liver edge or diaphragm while avoiding nearby ribs.
Conclusion: These surrogate strategies have enabled the gating of complex moving targets among different treatment sites at our institution.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic