Arkaprabha Banerjee, Kaylee R Jacobs, Yihui Wang, Emma H Doud, Evelyn Toh, Barry D Stein, Amber L Mosley, Guangming Zhong, Richard P Morrison, Sandra G Morrison, Shuai Hu, Julie A Brothwell, David E Nelson
{"title":"Tail-specific protease is an essential <i>Chlamydia</i> virulence factor that mediates the differentiation of elementary bodies into reticulate bodies.","authors":"Arkaprabha Banerjee, Kaylee R Jacobs, Yihui Wang, Emma H Doud, Evelyn Toh, Barry D Stein, Amber L Mosley, Guangming Zhong, Richard P Morrison, Sandra G Morrison, Shuai Hu, Julie A Brothwell, David E Nelson","doi":"10.1128/iai.00436-24","DOIUrl":null,"url":null,"abstract":"<p><p>Tail-specific proteases (Tsp) are members of a widely distributed family of serine proteases that commonly target and process periplasmic proteins in Gram-negative bacteria. The obligately intracellular, Gram-negative <i>Chlamydia</i> encode a highly conserved Tsp homolog whose target and function are unclear. We identified a <i>Chlamydia muridarum</i> mutant with a nonsense mutation in <i>tsp</i>. Differentiation of the <i>tsp</i> mutant elementary bodies into vegetative reticulate bodies was delayed at 37°C and completely blocked at 40°C. Tsp localized to <i>C. muridarum</i> cells but was not detected outside the inclusion, suggesting that it targets chlamydial rather than host proteins. The abundance of key chlamydia outer membrane complex and virulence-related proteins differed in wild-type and <i>tsp</i> mutant elementary bodies, consistent with the possibility that Tsp regulates developmental cycle progression. The altered abundances of chlamydial structural and virulence factors could explain why the mutant, but not an isogenic recombinant with wild-type <i>tsp</i>, was highly attenuated in a mouse intravaginal infection model. Thus, chlamydial Tsp is required for timely differentiation of elementary bodies into reticulate bodies <i>in vitro</i> and is an essential virulence factor <i>in vivo</i>.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0043624"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00436-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tail-specific proteases (Tsp) are members of a widely distributed family of serine proteases that commonly target and process periplasmic proteins in Gram-negative bacteria. The obligately intracellular, Gram-negative Chlamydia encode a highly conserved Tsp homolog whose target and function are unclear. We identified a Chlamydia muridarum mutant with a nonsense mutation in tsp. Differentiation of the tsp mutant elementary bodies into vegetative reticulate bodies was delayed at 37°C and completely blocked at 40°C. Tsp localized to C. muridarum cells but was not detected outside the inclusion, suggesting that it targets chlamydial rather than host proteins. The abundance of key chlamydia outer membrane complex and virulence-related proteins differed in wild-type and tsp mutant elementary bodies, consistent with the possibility that Tsp regulates developmental cycle progression. The altered abundances of chlamydial structural and virulence factors could explain why the mutant, but not an isogenic recombinant with wild-type tsp, was highly attenuated in a mouse intravaginal infection model. Thus, chlamydial Tsp is required for timely differentiation of elementary bodies into reticulate bodies in vitro and is an essential virulence factor in vivo.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.