Levi Hoste, Bram Meertens, Benson Ogunjimi, Vito Sabato, Khadija Guerti, Jeroen van der Hilst, Jeroen Bogie, Rik Joos, Karlien Claes, Veronique Debacker, Fleur Janssen, Simon J Tavernier, Peggy Jacques, Steven Callens, Joke Dehoorne, Filomeen Haerynck
{"title":"Identification of a 5-Plex Cytokine Signature that Differentiates Patients with Multiple Systemic Inflammatory Diseases.","authors":"Levi Hoste, Bram Meertens, Benson Ogunjimi, Vito Sabato, Khadija Guerti, Jeroen van der Hilst, Jeroen Bogie, Rik Joos, Karlien Claes, Veronique Debacker, Fleur Janssen, Simon J Tavernier, Peggy Jacques, Steven Callens, Joke Dehoorne, Filomeen Haerynck","doi":"10.1007/s10753-024-02183-3","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with non-infectious systemic inflammation may suffer from one of many diseases, including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient management differ between these disorders. We aimed to investigate blood biomarkers able to discriminate between patient groups. We included 44 patients with active clinical and/or genetic systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We quantified 55 serum proteins and combined multiple machine learning algorithms to identify five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was observed in patients with systemic AI. Principal component analysis and unsupervised hierarchical clustering confirmed separation of disease groups. Logistic regression modelling revealed a high statistical significance for HI (P = 0.001), AID, and systemic AI (P < 0.0001). Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI (0.81). Further research is needed to validate findings in a larger prospective cohort. Results will contribute to a better understanding of the pathophysiology of systemic inflammatory disorders and can improve diagnosis and patient management.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02183-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with non-infectious systemic inflammation may suffer from one of many diseases, including hyperinflammation (HI), autoinflammatory disorders (AID), and systemic autoimmune disease (AI). Despite their clinical overlap, the pathophysiology and patient management differ between these disorders. We aimed to investigate blood biomarkers able to discriminate between patient groups. We included 44 patients with active clinical and/or genetic systemic inflammatory disease (9 HI, 27 AID, 8 systemic AI) and 16 healthy controls. We quantified 55 serum proteins and combined multiple machine learning algorithms to identify five proteins (CCL26, CXCL10, ICAM-1, IL-27, and SAA) that maximally separated patient groups. High ICAM-1 was associated with HI. AID was characterized by an increase in SAA and decrease in CXCL10 levels. A trend for higher CXCL10 and statistically lower SAA was observed in patients with systemic AI. Principal component analysis and unsupervised hierarchical clustering confirmed separation of disease groups. Logistic regression modelling revealed a high statistical significance for HI (P = 0.001), AID, and systemic AI (P < 0.0001). Predictive accuracy was excellent for systemic AI (AUC 0.94) and AID (0.91) and good for HI (0.81). Further research is needed to validate findings in a larger prospective cohort. Results will contribute to a better understanding of the pathophysiology of systemic inflammatory disorders and can improve diagnosis and patient management.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.