LGG-NeXt: A Next Generation CNN and Transformer Hybrid Model for the Diagnosis of Alzheimer's Disease Using 2D Structural MRI.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jing Bai, Zhengyang Zhang, Yue Yin, Weikang Jin, Talal Ahmed Ali Ali, Yong Xiong, Zhu Xiao
{"title":"LGG-NeXt: A Next Generation CNN and Transformer Hybrid Model for the Diagnosis of Alzheimer's Disease Using 2D Structural MRI.","authors":"Jing Bai, Zhengyang Zhang, Yue Yin, Weikang Jin, Talal Ahmed Ali Ali, Yong Xiong, Zhu Xiao","doi":"10.1109/JBHI.2024.3495835","DOIUrl":null,"url":null,"abstract":"<p><p>Incurable Alzheimer's disease (AD) plagues many elderly people and families. It is important to accurately diagnose and predict it at an early stage. However, the existing methods have shortcomings, such as inability to learn local and global information and the inability to extract effective features. In this paper, we propose a lightweight classification network Local and Global Graph ConvNeXt. This model has a hybrid architecture of convolutional neural network and Transformers. We build the Global NeXt Block and the Local NeXt Block to extract the local and global features of the structural magnetic resonance imaging (sMRI). These two blocks are optimized by adding global multilayer perceptron and locally grouped attention, respectively. Then, the features are fed into the pixel graph neural network to aggregate the valid pixel features using mask attention. In addition, we decoupled the loss by category to optimize the calculation of the loss. This method was tested on slices of the processed sMRI datasets from ADNI and achieved excellent performance. Our model achieves 95.81% accuracy with fewer parameters and floating point operations per second (FLOPS) than other classical efficient models in the diagnosis of AD.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3495835","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Incurable Alzheimer's disease (AD) plagues many elderly people and families. It is important to accurately diagnose and predict it at an early stage. However, the existing methods have shortcomings, such as inability to learn local and global information and the inability to extract effective features. In this paper, we propose a lightweight classification network Local and Global Graph ConvNeXt. This model has a hybrid architecture of convolutional neural network and Transformers. We build the Global NeXt Block and the Local NeXt Block to extract the local and global features of the structural magnetic resonance imaging (sMRI). These two blocks are optimized by adding global multilayer perceptron and locally grouped attention, respectively. Then, the features are fed into the pixel graph neural network to aggregate the valid pixel features using mask attention. In addition, we decoupled the loss by category to optimize the calculation of the loss. This method was tested on slices of the processed sMRI datasets from ADNI and achieved excellent performance. Our model achieves 95.81% accuracy with fewer parameters and floating point operations per second (FLOPS) than other classical efficient models in the diagnosis of AD.

LGG-NeXt:利用二维结构磁共振成像诊断阿尔茨海默病的下一代 CNN 和变压器混合模型。
无法治愈的阿尔茨海默病(AD)困扰着许多老年人和家庭。在早期阶段对其进行准确诊断和预测非常重要。然而,现有方法存在无法学习局部和全局信息、无法提取有效特征等缺点。在本文中,我们提出了一种轻量级分类网络本地和全局图 ConvNeXt。该模型采用卷积神经网络和变形器的混合架构。我们构建了全局 NeXt 块和局部 NeXt 块,以提取结构性磁共振成像(sMRI)的局部和全局特征。这两个区块分别通过添加全局多层感知器和局部分组注意进行优化。然后,将这些特征输入像素图神经网络,利用掩码注意力聚合有效的像素特征。此外,我们还将损失按类别解耦,以优化损失的计算。这种方法在 ADNI 处理过的 sMRI 数据集切片上进行了测试,取得了优异的性能。与其他诊断 AD 的经典高效模型相比,我们的模型以更少的参数和每秒浮点运算 (FLOPS) 达到了 95.81% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信