Xiuxin Zhao , Xiao Wang , Guanghui Xue , Yundong Gao , Yuanpei Zhang , Yanqin Li , Yachun Wang , Jianbin Li
{"title":"Regulation of cell-mediated immune responses in dairy bulls via long non-coding RNAs from submandibular lymph nodes, peripheral blood, and the spleen","authors":"Xiuxin Zhao , Xiao Wang , Guanghui Xue , Yundong Gao , Yuanpei Zhang , Yanqin Li , Yachun Wang , Jianbin Li","doi":"10.1016/j.ygeno.2024.110958","DOIUrl":null,"url":null,"abstract":"<div><div>Cell-mediated immune responses (CMIRs) are critical to building a robust immune system and reducing disease susceptibility in cattle. Long non-coding RNAs (lncRNAs) regulate various biological processes. However, to the best of our knowledge, the characterization and functions of lncRNAs and their regulations on the bovine CMIR have not been investigated comprehensively. In this study, experimental bulls were immunized with heat-killed preparation of <em>Candida albicans</em> (HKCA) to induce delayed-type hypersensitivity (DTH). Three bulls were classified as high- CMIR responders and three were low-CMIR responders, based on their classical DTH skin reactions. LncRNAs were identified in the submandibular lymph nodes, peripheral blood, and spleen of high- and low-CMIR animals using strand-specific RNA sequencing. A total of 21,003 putative lncRNAs were identified across tissues, and 420, 468, and 599 lncRNAs were differentially expressed between the two groups in the submandibular lymph node, peripheral blood, and spleen tissues, respectively. Functional analysis of the differentially expressed lncRNA (DElncRNA) target genes showed that a number of immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched, including immune response, cell adhesion, nucleosome, DNA packaging, antigen processing and presentation, and complement and coagulation cascades. Tissue specificity analysis indicated that lncRNA transcripts have stronger tissue specificity than mRNA. Furthermore, an interaction network was constructed based on DElncRNAs and DEGs, and 11, 14, and 11 promising lncRNAs were identified as potential candidate genes influencing immune response regulation in submandibular lymph nodes, peripheral blood, and spleen tissues, respectively. These results provide a foundation for further research into the biological functions of lncRNAs associated with bovine CMIR and identify candidate lncRNA markers for cell-mediated immune responses.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 6","pages":"Article 110958"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001794","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-mediated immune responses (CMIRs) are critical to building a robust immune system and reducing disease susceptibility in cattle. Long non-coding RNAs (lncRNAs) regulate various biological processes. However, to the best of our knowledge, the characterization and functions of lncRNAs and their regulations on the bovine CMIR have not been investigated comprehensively. In this study, experimental bulls were immunized with heat-killed preparation of Candida albicans (HKCA) to induce delayed-type hypersensitivity (DTH). Three bulls were classified as high- CMIR responders and three were low-CMIR responders, based on their classical DTH skin reactions. LncRNAs were identified in the submandibular lymph nodes, peripheral blood, and spleen of high- and low-CMIR animals using strand-specific RNA sequencing. A total of 21,003 putative lncRNAs were identified across tissues, and 420, 468, and 599 lncRNAs were differentially expressed between the two groups in the submandibular lymph node, peripheral blood, and spleen tissues, respectively. Functional analysis of the differentially expressed lncRNA (DElncRNA) target genes showed that a number of immune-related Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched, including immune response, cell adhesion, nucleosome, DNA packaging, antigen processing and presentation, and complement and coagulation cascades. Tissue specificity analysis indicated that lncRNA transcripts have stronger tissue specificity than mRNA. Furthermore, an interaction network was constructed based on DElncRNAs and DEGs, and 11, 14, and 11 promising lncRNAs were identified as potential candidate genes influencing immune response regulation in submandibular lymph nodes, peripheral blood, and spleen tissues, respectively. These results provide a foundation for further research into the biological functions of lncRNAs associated with bovine CMIR and identify candidate lncRNA markers for cell-mediated immune responses.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.