Application of artificial intelligence and machine learning for risk stratification acute kidney injury among hematopoietic stem cell transplantation patients: PCRRT ICONIC AI Initiative Group Meeting Proceedings.

IF 1.1 4区 医学 Q3 UROLOGY & NEPHROLOGY
Rupesh Raina, Kush Doshi, Pushan Aggarwal, Parker Kim, Jonathan Sasse, Sidharth Sethi, Carolyn Abitbol, Rolla Abu-Arja, Kianoush Kashani
{"title":"Application of artificial intelligence and machine learning for risk stratification acute kidney injury among hematopoietic stem cell transplantation patients: PCRRT ICONIC AI Initiative Group Meeting Proceedings.","authors":"Rupesh Raina, Kush Doshi, Pushan Aggarwal, Parker Kim, Jonathan Sasse, Sidharth Sethi, Carolyn Abitbol, Rolla Abu-Arja, Kianoush Kashani","doi":"10.5414/CN111421","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a frequent, severe complication of hematopoietic stem cell transplantation (HSCT) and is associated with an increased risk of morbidity and mortality. Recent advances in artificial intelligence (AI) and machine learning (ML) have showcased their proficiency in predicting AKI, projecting disease progression, and accurately identifying underlying etiologies. This review examines the central aspects of AKI post-HSCT, veno-occlusive disease (VOD) in HSCT recipients, discusses present-day applications of artificial intelligence in AKI, and introduces a proposed ML framework for the early detection of AKI risk.</p>","PeriodicalId":10396,"journal":{"name":"Clinical nephrology","volume":" ","pages":"129-139"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5414/CN111421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) is a frequent, severe complication of hematopoietic stem cell transplantation (HSCT) and is associated with an increased risk of morbidity and mortality. Recent advances in artificial intelligence (AI) and machine learning (ML) have showcased their proficiency in predicting AKI, projecting disease progression, and accurately identifying underlying etiologies. This review examines the central aspects of AKI post-HSCT, veno-occlusive disease (VOD) in HSCT recipients, discusses present-day applications of artificial intelligence in AKI, and introduces a proposed ML framework for the early detection of AKI risk.

应用人工智能和机器学习对造血干细胞移植患者的急性肾损伤进行风险分层:PCRRT ICONIC人工智能倡议小组会议论文集。
急性肾损伤(AKI)是造血干细胞移植(HSCT)中一种常见的严重并发症,与发病率和死亡率的增加有关。人工智能(AI)和机器学习(ML)的最新进展展示了它们在预测 AKI、预测疾病进展和准确识别潜在病因方面的能力。这篇综述探讨了造血干细胞移植后 AKI 的核心问题、造血干细胞移植受者的静脉闭塞性疾病 (VOD),讨论了人工智能在 AKI 中的最新应用,并介绍了用于早期检测 AKI 风险的拟议 ML 框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical nephrology
Clinical nephrology 医学-泌尿学与肾脏学
CiteScore
2.10
自引率
9.10%
发文量
138
审稿时长
4-8 weeks
期刊介绍: Clinical Nephrology appears monthly and publishes manuscripts containing original material with emphasis on the following topics: prophylaxis, pathophysiology, immunology, diagnosis, therapy, experimental approaches and dialysis and transplantation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信