Ambroxol Improves Amyloidogenic, NF-κB, and Nrf2 Pathways in a Scopolamine-Induced Cognitive Impairment Rat Model of Alzheimer's Disease

IF 3.5 4区 医学 Q2 CHEMISTRY, MEDICINAL
Khushboo Govind Faldu, Jigna Samir Shah
{"title":"Ambroxol Improves Amyloidogenic, NF-κB, and Nrf2 Pathways in a Scopolamine-Induced Cognitive Impairment Rat Model of Alzheimer's Disease","authors":"Khushboo Govind Faldu,&nbsp;Jigna Samir Shah","doi":"10.1002/ddr.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ambroxol (ABX) is used to manage excessive production of mucus in the respiratory system. The present study sought to assess the neuroprotective potential of ambroxol by influencing the amyloidogenic, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways in a rat model of Alzheimer's disease (AD) induced by scopolamine. The AD pathology was induced by chronic administration of scopolamine. The rats were given scopolamine at a dose of 2 mg/kg via intraperitoneal injection daily for 14 days, followed by treatment (ABX 121.5, 135, and 180 mg/kg orally and 5 mg/kg orally of donepezil) for the next 28 days while continuing to receive daily scopolamine injection. The behavior of the rats was evaluated using Modified Y-Maze and Novel object recognition tasks. Analyses were carried out on AD pathological markers [Amyloid beta peptide 1-40, Amyloid beta peptide 1-42, acetylcholinesterase, beta-secretase 1 (BACE1), total tau, and p-tau], inflammatory markers [NF-κB, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon γ], antioxidant markers (Nrf2 and heme Oxygenase 1 (HO-1)], along with synaptophysin and glial fibrillary acidic protein (GFAP) immunohistochemistry and histopathological assessment of the hippocampus. Our findings indicated that ABX reduced impairment in behavior. Levels of Acetylcholinesterase, BACE1, amyloid beta 1-40, amyloid beta 1-42, total tau, p-tau, NF-κB, IFN-γ, IL-6, and TNF-α decreased significantly. There was a significant increase in the levels of HO-1 and Nrf2. It stopped the neuronal degeneration, raised synaptophysin immunoreactivity, and lowered GFAP immunoreactivity. The current research indicates that ambroxol may possess senomorphic properties by impacting the transcription factors NF-κB and senescence-associated secretory phenotype (SASP). Consequently, it could provide neuroprotection through alterations in the Nrf2 and NF-κB signaling pathways in AD.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ambroxol (ABX) is used to manage excessive production of mucus in the respiratory system. The present study sought to assess the neuroprotective potential of ambroxol by influencing the amyloidogenic, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways in a rat model of Alzheimer's disease (AD) induced by scopolamine. The AD pathology was induced by chronic administration of scopolamine. The rats were given scopolamine at a dose of 2 mg/kg via intraperitoneal injection daily for 14 days, followed by treatment (ABX 121.5, 135, and 180 mg/kg orally and 5 mg/kg orally of donepezil) for the next 28 days while continuing to receive daily scopolamine injection. The behavior of the rats was evaluated using Modified Y-Maze and Novel object recognition tasks. Analyses were carried out on AD pathological markers [Amyloid beta peptide 1-40, Amyloid beta peptide 1-42, acetylcholinesterase, beta-secretase 1 (BACE1), total tau, and p-tau], inflammatory markers [NF-κB, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon γ], antioxidant markers (Nrf2 and heme Oxygenase 1 (HO-1)], along with synaptophysin and glial fibrillary acidic protein (GFAP) immunohistochemistry and histopathological assessment of the hippocampus. Our findings indicated that ABX reduced impairment in behavior. Levels of Acetylcholinesterase, BACE1, amyloid beta 1-40, amyloid beta 1-42, total tau, p-tau, NF-κB, IFN-γ, IL-6, and TNF-α decreased significantly. There was a significant increase in the levels of HO-1 and Nrf2. It stopped the neuronal degeneration, raised synaptophysin immunoreactivity, and lowered GFAP immunoreactivity. The current research indicates that ambroxol may possess senomorphic properties by impacting the transcription factors NF-κB and senescence-associated secretory phenotype (SASP). Consequently, it could provide neuroprotection through alterations in the Nrf2 and NF-κB signaling pathways in AD.

氨溴索能改善东莨菪碱诱导的阿尔茨海默病大鼠认知障碍模型中的淀粉样蛋白生成、NF-κB和Nrf2通路。
氨溴索(ABX)用于控制呼吸系统粘液的过度分泌。本研究试图评估氨溴索在东莨菪碱诱导的阿尔茨海默病(AD)大鼠模型中通过影响淀粉样蛋白生成、活化B细胞的核因子卡巴轻链增强子(NF-κB)和核因子红细胞2相关因子2(Nrf2)通路来保护神经的潜力。阿兹海默病是通过长期服用东莨菪碱诱发的。每天给大鼠腹腔注射2毫克/千克剂量的东莨菪碱,持续14天,然后在接下来的28天里继续每天注射东莨菪碱(口服ABX 121.5、135和180毫克/千克,口服多奈哌齐5毫克/千克)。使用改良Y迷宫和新物体识别任务对大鼠的行为进行评估。白细胞介素 6 (IL-6) 和干扰素 γ]、抗氧化标志物(Nrf2 和血红素氧合酶 1 (HO-1))以及突触素和神经胶质纤维酸性蛋白 (GFAP) 免疫组化和海马组织病理学评估。我们的研究结果表明,ABX 可减少行为障碍。乙酰胆碱酯酶、BACE1、淀粉样 beta 1-40、淀粉样 beta 1-42、总 tau、p-tau、NF-κB、IFN-γ、IL-6 和 TNF-α 的水平显著下降。HO-1和Nrf2的水平有明显提高。它阻止了神经元变性,提高了突触素免疫活性,降低了GFAP免疫活性。目前的研究表明,氨溴索可能通过影响转录因子NF-κB和衰老相关分泌表型(SASP)而具有衰老特性。因此,它可以通过改变Nrf2和NF-κB信号通路为AD患者提供神经保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.60%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信