Jae-Won Eom, Jin-Yeon Lee, Yeabin Kwon, Yang-Hee Kim
{"title":"An increase of lysosomes through EGF-triggered endocytosis attenuated zinc-mediated lysosomal membrane permeabilization and neuronal cell death.","authors":"Jae-Won Eom, Jin-Yeon Lee, Yeabin Kwon, Yang-Hee Kim","doi":"10.1038/s41419-024-07192-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the context of acute brain injuries, where zinc neurotoxicity and oxidative stress are acknowledged contributors to neuronal damage, we investigated the pivotal role of lysosomes as a potential protective mechanism. Our research commenced with an exploration of epidermal growth factor (EGF) and its impact on lysosomal dynamics, particularly its neuroprotective potential against zinc-induced cytotoxicity. Using primary mouse cerebrocortical cultures, we observed the rapid induction of EGFR endocytosis triggered by EGF, resulting in a transient increase in lysosomal vesicles. Furthermore, EGF stimulated lysosomal biogenesis, evident through elevated expression of lysosomal-associated membrane protein 1 (LAMP-1) and the induction and activation of prominent lysosomal proteases, particularly cathepsin B (CTSB). This process of EGFR endocytosis was found to promote lysosomal augmentation, thus conferring protection against zinc-induced lysosomal membrane permeabilization (LMP) and subsequent neuronal death. Notably, the neuroprotective effects and lysosomal enhancement induced by EGF were almost completely reversed by the inhibition of clathrin-mediated and caveolin-mediated endocytosis pathways, along with the disruption of retrograde trafficking. Furthermore, tyrosine kinase inhibition of EGFR nullified EGFR endocytosis, resulting in the abrogation of EGF-induced lysosomal upregulation and neuroprotection. An intriguing aspect of our study is the successful replication of EGF's neuroprotective effects through the overexpression of LAMP-1, which significantly reduced zinc-induced LMP and cell death, demonstrated in both primary mouse cerebrocortical neuronal cultures and human embryonic kidney (HEK) cells. Our research extended beyond zinc-induced neurotoxicity, as we observed EGF's protective effects against other oxidative stressors linked to intracellular zinc release, including hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and 1-methyl-4-phenylpyridinium ion (MPP<sup>+</sup>). Collectively, our findings unveil the intricate interplay between EGF-triggered EGFR endocytosis, lysosomal upregulation, an increase in the regulatory capacity for zinc homeostasis, and the subsequent alleviation of zinc-induced neurotoxicity. These results present promising avenues for therapeutic interventions to enhance neuroprotection by targeting lysosomal augmentation.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 11","pages":"823"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07192-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of acute brain injuries, where zinc neurotoxicity and oxidative stress are acknowledged contributors to neuronal damage, we investigated the pivotal role of lysosomes as a potential protective mechanism. Our research commenced with an exploration of epidermal growth factor (EGF) and its impact on lysosomal dynamics, particularly its neuroprotective potential against zinc-induced cytotoxicity. Using primary mouse cerebrocortical cultures, we observed the rapid induction of EGFR endocytosis triggered by EGF, resulting in a transient increase in lysosomal vesicles. Furthermore, EGF stimulated lysosomal biogenesis, evident through elevated expression of lysosomal-associated membrane protein 1 (LAMP-1) and the induction and activation of prominent lysosomal proteases, particularly cathepsin B (CTSB). This process of EGFR endocytosis was found to promote lysosomal augmentation, thus conferring protection against zinc-induced lysosomal membrane permeabilization (LMP) and subsequent neuronal death. Notably, the neuroprotective effects and lysosomal enhancement induced by EGF were almost completely reversed by the inhibition of clathrin-mediated and caveolin-mediated endocytosis pathways, along with the disruption of retrograde trafficking. Furthermore, tyrosine kinase inhibition of EGFR nullified EGFR endocytosis, resulting in the abrogation of EGF-induced lysosomal upregulation and neuroprotection. An intriguing aspect of our study is the successful replication of EGF's neuroprotective effects through the overexpression of LAMP-1, which significantly reduced zinc-induced LMP and cell death, demonstrated in both primary mouse cerebrocortical neuronal cultures and human embryonic kidney (HEK) cells. Our research extended beyond zinc-induced neurotoxicity, as we observed EGF's protective effects against other oxidative stressors linked to intracellular zinc release, including hydrogen peroxide (H2O2) and 1-methyl-4-phenylpyridinium ion (MPP+). Collectively, our findings unveil the intricate interplay between EGF-triggered EGFR endocytosis, lysosomal upregulation, an increase in the regulatory capacity for zinc homeostasis, and the subsequent alleviation of zinc-induced neurotoxicity. These results present promising avenues for therapeutic interventions to enhance neuroprotection by targeting lysosomal augmentation.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism