{"title":"DECOMPOSITION MECHANISM OF ALKYLIDENE BRIDGED TETRAZOLES WITH DIFFERENT CARBON CHAIN LENGTHS.","authors":"Sarika Venugopal, Anuj A Vargeese","doi":"10.1002/cphc.202400943","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen-rich heterocycles, particularly tetrazole-based high-energy density materials (HEDMs) offer high performance, low sensitivity, and are eco-friendly. Despite the diversity of nitrogen-rich energetic heterocycles, many are sensitive to external stimuli, and the introduction of a methylene, ethylene, or C-C linkage between nitrogen-rich heterocycles is a successful strategy to improve mechanical sensitivity and thermal stability. Understanding the potential anomalous thermal or kinetic behavior of such molecules is crucial for the design of new HEDMs and practical applications of these molecules. We have investigated the influence of introducing an alkylidene bridge between the energetic nitrogen heterocycles on the decomposition mechanism and pathway of different bridged tetrazoles, namely 5,5'-Bis-1H-tetrazole, 1,2-Bis(5-tetrazolo)methane, and 1,2-Bis(5-tetrazolo)ethane, using thermal experiments, mass spectrometry, and computational analysis. Kinetic parameters were evaluated using a non-linear integral method, and decomposition pathways were proposed based on mass fragmentation data. Stability comparisons were made using HOMO-LUMO gap and electrostatic potential (ESP) values from computational calculations.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400943"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400943","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-rich heterocycles, particularly tetrazole-based high-energy density materials (HEDMs) offer high performance, low sensitivity, and are eco-friendly. Despite the diversity of nitrogen-rich energetic heterocycles, many are sensitive to external stimuli, and the introduction of a methylene, ethylene, or C-C linkage between nitrogen-rich heterocycles is a successful strategy to improve mechanical sensitivity and thermal stability. Understanding the potential anomalous thermal or kinetic behavior of such molecules is crucial for the design of new HEDMs and practical applications of these molecules. We have investigated the influence of introducing an alkylidene bridge between the energetic nitrogen heterocycles on the decomposition mechanism and pathway of different bridged tetrazoles, namely 5,5'-Bis-1H-tetrazole, 1,2-Bis(5-tetrazolo)methane, and 1,2-Bis(5-tetrazolo)ethane, using thermal experiments, mass spectrometry, and computational analysis. Kinetic parameters were evaluated using a non-linear integral method, and decomposition pathways were proposed based on mass fragmentation data. Stability comparisons were made using HOMO-LUMO gap and electrostatic potential (ESP) values from computational calculations.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.