ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Qiule Yu, Zhixing Zhang, Guixia Liu, Weihua Li, Yun Tang
{"title":"ToxGIN: an In silico prediction model for peptide toxicity via graph isomorphism networks integrating peptide sequence and structure information.","authors":"Qiule Yu, Zhixing Zhang, Guixia Liu, Weihua Li, Yun Tang","doi":"10.1093/bib/bbae583","DOIUrl":null,"url":null,"abstract":"<p><p>Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae583","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide drugs have demonstrated enormous potential in treating a variety of diseases, yet toxicity prediction remains a significant challenge in drug development. Existing models for prediction of peptide toxicity largely rely on sequence information and often neglect the three-dimensional (3D) structures of peptides. This study introduced a novel model for short peptide toxicity prediction, named ToxGIN. The model utilizes Graph Isomorphism Network (GIN), integrating the underlying amino acid sequence composition and the 3D structures of peptides. ToxGIN comprises three primary modules: (i) Sequence processing module, converting peptide 3D structures and sequences into information of nodes and edges; (ii) Feature extraction module, utilizing GIN to learn discriminative features from nodes and edges; (iii) Classification module, employing a fully connected classifier for toxicity prediction. ToxGIN performed well on the independent test set with F1 score = 0.83, AUROC = 0.91, and Matthews correlation coefficient = 0.68, better than existing models for prediction of peptide toxicity. These results validated the effectiveness of integrating 3D structural information with sequence data using GIN for peptide toxicity prediction. The proposed ToxGIN and data can be freely accessible at https://github.com/cihebiyql/ToxGIN.

ToxGIN:通过图同构网络整合多肽序列和结构信息的多肽毒性硅学预测模型。
肽类药物在治疗各种疾病方面已显示出巨大的潜力,但毒性预测仍然是药物开发中的一项重大挑战。现有的多肽毒性预测模型主要依赖序列信息,往往忽略了多肽的三维(3D)结构。本研究引入了一种新的短肽毒性预测模型,命名为 ToxGIN。该模型利用图同构网络(GIN),整合了肽的基本氨基酸序列组成和三维结构。ToxGIN 包括三个主要模块:(i) 序列处理模块,将肽的三维结构和序列转换为节点和边的信息;(ii) 特征提取模块,利用 GIN 从节点和边中学习判别特征;(iii) 分类模块,采用全连接分类器进行毒性预测。ToxGIN 在独立测试集上表现良好,F1 分数 = 0.83,AUROC = 0.91,Matthews 相关系数 = 0.68,优于现有的多肽毒性预测模型。这些结果验证了利用 GIN 将三维结构信息与序列数据整合用于多肽毒性预测的有效性。建议的 ToxGIN 和数据可在 https://github.com/cihebiyql/ToxGIN 免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信