Deciphering lineage-relevant gene regulatory networks during endoderm formation by InPheRNo-ChIP.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Chen Su, William A Pastor, Amin Emad
{"title":"Deciphering lineage-relevant gene regulatory networks during endoderm formation by InPheRNo-ChIP.","authors":"Chen Su, William A Pastor, Amin Emad","doi":"10.1093/bib/bbae592","DOIUrl":null,"url":null,"abstract":"<p><p>Deciphering the underlying gene regulatory networks (GRNs) that govern early human embryogenesis is critical for understanding developmental mechanisms yet remains challenging due to limited sample availability and the inherent complexity of the biological processes involved. To address this, we developed InPheRNo-ChIP, a computational framework that integrates multimodal data, including RNA-seq, transcription factor (TF)-specific ChIP-seq, and phenotypic labels, to reconstruct phenotype-relevant GRNs associated with endoderm development. The core of this method is a probabilistic graphical model that models the simultaneous effect of TFs on their putative target genes to influence a particular phenotypic outcome. Unlike the majority of existing GRN inference methods that are agnostic to the phenotypic outcomes, InPheRNo-ChIP directly incorporates phenotypic information during GRN inference, enabling the distinction between lineage-specific and general regulatory interactions. We integrated data from three experimental studies and applied InPheRNo-ChIP to infer the GRN governing the differentiation of human embryonic stem cells into definitive endoderm. Benchmarking against a scRNA-seq CRISPRi study demonstrated InPheRNo-ChIP's ability to identify regulatory interactions involving endoderm markers FOXA2, SMAD2, and SOX17, outperforming other methods. This highlights the importance of incorporating the phenotypic context during network inference. Furthermore, an ablation study confirms the synergistic contribution of ChIP-seq, RNA-seq, and phenotypic data, highlighting the value of multimodal integration for accurate phenotype-relevant GRN reconstruction.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae592","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering the underlying gene regulatory networks (GRNs) that govern early human embryogenesis is critical for understanding developmental mechanisms yet remains challenging due to limited sample availability and the inherent complexity of the biological processes involved. To address this, we developed InPheRNo-ChIP, a computational framework that integrates multimodal data, including RNA-seq, transcription factor (TF)-specific ChIP-seq, and phenotypic labels, to reconstruct phenotype-relevant GRNs associated with endoderm development. The core of this method is a probabilistic graphical model that models the simultaneous effect of TFs on their putative target genes to influence a particular phenotypic outcome. Unlike the majority of existing GRN inference methods that are agnostic to the phenotypic outcomes, InPheRNo-ChIP directly incorporates phenotypic information during GRN inference, enabling the distinction between lineage-specific and general regulatory interactions. We integrated data from three experimental studies and applied InPheRNo-ChIP to infer the GRN governing the differentiation of human embryonic stem cells into definitive endoderm. Benchmarking against a scRNA-seq CRISPRi study demonstrated InPheRNo-ChIP's ability to identify regulatory interactions involving endoderm markers FOXA2, SMAD2, and SOX17, outperforming other methods. This highlights the importance of incorporating the phenotypic context during network inference. Furthermore, an ablation study confirms the synergistic contribution of ChIP-seq, RNA-seq, and phenotypic data, highlighting the value of multimodal integration for accurate phenotype-relevant GRN reconstruction.

通过 InPheRNo-ChIP 解密内胚层形成过程中与品系相关的基因调控网络。
破译支配人类早期胚胎发生的潜在基因调控网络(GRN)对于了解发育机制至关重要,但由于样本可用性有限以及所涉及的生物过程固有的复杂性,这一工作仍具有挑战性。为了解决这个问题,我们开发了 InPheRNo-ChIP,这是一个计算框架,它整合了多模态数据,包括 RNA-seq、转录因子(TF)特异性 ChIP-seq 和表型标签,以重建与内胚层发育相关的表型相关 GRN。该方法的核心是一个概率图形模型,它模拟了转录因子对其推定靶基因的同步作用,从而影响特定的表型结果。与大多数与表型结果无关的现有 GRN 推断方法不同,InPheRNo-ChIP 在 GRN 推断过程中直接纳入了表型信息,从而区分了特异性和一般性调控相互作用。我们整合了三项实验研究的数据,并应用 InPheRNo-ChIP 推断了人类胚胎干细胞向明确内胚层分化的 GRN。以 scRNA-seq CRISPRi 研究为基准,证明 InPheRNo-ChIP 有能力识别涉及内胚层标志物 FOXA2、SMAD2 和 SOX17 的调控相互作用,表现优于其他方法。这凸显了在网络推断过程中结合表型背景的重要性。此外,一项消融研究证实了 ChIP-seq、RNA-seq 和表型数据的协同作用,凸显了多模态整合对于准确重建表型相关的 GRN 的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信