geessbin: an R package for analyzing small-sample binary data using modified generalized estimating equations with bias-adjusted covariance estimators.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Ryota Ishii, Tomohiro Ohigashi, Kazushi Maruo, Masahiko Gosho
{"title":"geessbin: an R package for analyzing small-sample binary data using modified generalized estimating equations with bias-adjusted covariance estimators.","authors":"Ryota Ishii, Tomohiro Ohigashi, Kazushi Maruo, Masahiko Gosho","doi":"10.1186/s12874-024-02368-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The generalized estimating equation (GEE) method is widely used for analyzing longitudinal and clustered data. Although the GEE estimate for regression coefficients and sandwich covariance estimate are consistent regardless of the choice of covariance structure, they are generally biased for small sample sizes. Various researchers have proposed modified GEE methods and covariance estimators to handle small-sample bias.</p><p><strong>Results: </strong>We briefly present bias-corrected and penalized GEE methods, along with 11 bias-adjusted covariance estimators. In addition, we focus on analyzing longitudinal or clustered data with binary outcomes using the logit link function and introduce package geessbin in R to implement conventional and modified GEE methods with bias-adjusted covariance estimators. Finally, we illustrate the implementation and detail a usage example of the package. The package is available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/geessbin/index.html .</p><p><strong>Conclusions: </strong>The geessbin package provides three GEE estimates with numerous covariance estimates. It is useful for analyzing correlated data such as longitudinal and clustered data. Additionally, the geessbin is designed to be user-friendly, making it accessible to non-statisticians.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"277"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02368-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The generalized estimating equation (GEE) method is widely used for analyzing longitudinal and clustered data. Although the GEE estimate for regression coefficients and sandwich covariance estimate are consistent regardless of the choice of covariance structure, they are generally biased for small sample sizes. Various researchers have proposed modified GEE methods and covariance estimators to handle small-sample bias.

Results: We briefly present bias-corrected and penalized GEE methods, along with 11 bias-adjusted covariance estimators. In addition, we focus on analyzing longitudinal or clustered data with binary outcomes using the logit link function and introduce package geessbin in R to implement conventional and modified GEE methods with bias-adjusted covariance estimators. Finally, we illustrate the implementation and detail a usage example of the package. The package is available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/geessbin/index.html .

Conclusions: The geessbin package provides three GEE estimates with numerous covariance estimates. It is useful for analyzing correlated data such as longitudinal and clustered data. Additionally, the geessbin is designed to be user-friendly, making it accessible to non-statisticians.

geessbin:使用修正广义估计方程和偏差调整协方差估计器分析小样本二元数据的 R 软件包。
背景:广义估计方程(GEE)法被广泛用于分析纵向和聚类数据。尽管无论选择何种协方差结构,回归系数的 GEE 估计值和三明治协方差估计值都是一致的,但对于小样本量而言,它们一般都存在偏差。不同的研究者提出了修改后的 GEE 方法和协方差估计方法来处理小样本偏差:我们简要介绍了偏差校正和惩罚 GEE 方法,以及 11 种偏差调整协方差估计器。此外,我们还重点分析了使用 logit 链接函数分析二元结果的纵向或聚类数据,并介绍了 R 中的 geessbin 软件包,以实现带有偏差调整协方差估计器的传统和修正 GEE 方法。最后,我们将对该软件包的实现进行说明,并详细介绍一个使用示例。该软件包可从 R 综合存档网络(CRAN)https://cran.r-project.org/web/packages/geessbin/index.html .Conclusions 获取:geessbin 软件包提供了三个 GEE 估计和多个协方差估计。它对于分析纵向数据和聚类数据等相关数据非常有用。此外,geessbin 的设计对用户友好,使非统计人员也能使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信