Harnessing full-text publications for deep insights into C. elegans and Drosophila biomaps.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Karthick Raja Arulprakasam, Janelle Wing Shan Toh, Herman Foo, Mani R Kumar, An-Nikol Kutevska, Emilia Emmanuelle Davey, Marek Mutwil, Guillaume Thibault
{"title":"Harnessing full-text publications for deep insights into C. elegans and Drosophila biomaps.","authors":"Karthick Raja Arulprakasam, Janelle Wing Shan Toh, Herman Foo, Mani R Kumar, An-Nikol Kutevska, Emilia Emmanuelle Davey, Marek Mutwil, Guillaume Thibault","doi":"10.1186/s12864-024-10997-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the rapidly expanding domain of scientific research, tracking and synthesizing information from the rapidly increasing volume of publications pose significant challenges. To address this, we introduce a novel high-throughput pipeline that employs ChatGPT to systematically extract and analyze connectivity information from the full-texts and abstracts of 24,237 and 150,538 research publications concerning Caenorhabditis elegans and Drosophila melanogaster, respectively. This approach has effectively identified 200,219 and 1,194,587 interactions within the C. elegans and Drosophila biomaps, respectively. Utilizing Cytoscape Web, we have developed a searchable online biomaps that link relevant keywords to their corresponding PubMed IDs, thus providing seamless access to an extensive knowledge network encompassing C. elegans and Drosophila. Our work highlights the transformative potential of integrating artificial intelligence with bioinformatics to deepen our understanding of complex biological systems. By revealing the intricate web of relationships among key entities in C. elegans and Drosophila, we offer invaluable insights that promise to propel advancements in genetics, developmental biology, neuroscience, longevity, and beyond. We also provide details and discuss significant nodes within both biomaps, including the insulin/IGF-1 signaling (IIS) and the notch pathways. Our innovative methodology sets a robust foundation for future research aimed at unravelling complex biological networks across diverse organisms. The two databases are available at worm.bio-map.com and drosophila.bio-map.com.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1080"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562368/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10997-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly expanding domain of scientific research, tracking and synthesizing information from the rapidly increasing volume of publications pose significant challenges. To address this, we introduce a novel high-throughput pipeline that employs ChatGPT to systematically extract and analyze connectivity information from the full-texts and abstracts of 24,237 and 150,538 research publications concerning Caenorhabditis elegans and Drosophila melanogaster, respectively. This approach has effectively identified 200,219 and 1,194,587 interactions within the C. elegans and Drosophila biomaps, respectively. Utilizing Cytoscape Web, we have developed a searchable online biomaps that link relevant keywords to their corresponding PubMed IDs, thus providing seamless access to an extensive knowledge network encompassing C. elegans and Drosophila. Our work highlights the transformative potential of integrating artificial intelligence with bioinformatics to deepen our understanding of complex biological systems. By revealing the intricate web of relationships among key entities in C. elegans and Drosophila, we offer invaluable insights that promise to propel advancements in genetics, developmental biology, neuroscience, longevity, and beyond. We also provide details and discuss significant nodes within both biomaps, including the insulin/IGF-1 signaling (IIS) and the notch pathways. Our innovative methodology sets a robust foundation for future research aimed at unravelling complex biological networks across diverse organisms. The two databases are available at worm.bio-map.com and drosophila.bio-map.com.

利用全文出版物深入了解秀丽隐杆线虫和果蝇生物图谱。
在快速发展的科学研究领域,从数量迅速增加的出版物中跟踪和综合信息是一项重大挑战。为了解决这个问题,我们引入了一个新颖的高通量管道,利用 ChatGPT 系统地提取和分析分别来自 24,237 篇和 150,538 篇有关秀丽隐杆线虫和黑腹果蝇的研究论文全文和摘要中的连接性信息。这种方法在秀丽隐杆线虫和果蝇的生物图谱中分别有效地发现了 200,219 和 1,194,587 种相互作用。利用 Cytoscape Web,我们开发了一个可搜索的在线生物图谱,将相关关键词与其对应的 PubMed ID 相链接,从而提供了对包括秀丽隐杆线虫和果蝇在内的广泛知识网络的无缝访问。我们的工作凸显了将人工智能与生物信息学相结合以加深我们对复杂生物系统理解的变革潜力。通过揭示线虫和果蝇关键实体之间错综复杂的关系网,我们提供了宝贵的见解,有望推动遗传学、发育生物学、神经科学、长寿学等领域的进步。我们还详细介绍并讨论了两个生物图谱中的重要节点,包括胰岛素/IGF-1 信号传导(IIS)和缺口通路。我们的创新方法为未来的研究奠定了坚实的基础,旨在揭示不同生物体的复杂生物网络。这两个数据库分别位于 worm.bio-map.com 和 drosophila.bio-map.com。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信