Graziele Cristina Ferreira, Verônica de Moraes Manzato, Debora Noma Okamoto, Livia Rosa Fernandes, Deivid Martins Santos, Gabriel Cerqueira Alves Costa, Fernando Allan Abreu Silva, Ricardo Jose Soares Torquato, Giuseppe Palmisano, Maria Aparecida Juliano, Aparecida Sadae Tanaka
{"title":"Sunflower Trypsin Monocyclic Inhibitor Selected for the Main Protease of SARS-CoV-2 by Phage Display.","authors":"Graziele Cristina Ferreira, Verônica de Moraes Manzato, Debora Noma Okamoto, Livia Rosa Fernandes, Deivid Martins Santos, Gabriel Cerqueira Alves Costa, Fernando Allan Abreu Silva, Ricardo Jose Soares Torquato, Giuseppe Palmisano, Maria Aparecida Juliano, Aparecida Sadae Tanaka","doi":"10.1248/bpb.b24-00369","DOIUrl":null,"url":null,"abstract":"<p><p>Main protease (Mpro), also known as 3-chymotrypsin-like protease (3CLpro), is a nonstructural protein (NSP5) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the cleavage of virus polyproteins during viral replication at 11 sites, which generates 12 functional proteins. Mpro is a cysteine protease that presents specificity for the amino acid residue glutamine (Gln) at the P1 position of the substrate. Due to its essential role in processing the viral polyprotein for viral particle formation (assembly), Mpro inhibition has become an important tool to control coronavirus disease 2019 (COVID-19), since Mpro inhibitors act as antivirals. In this work, we proposed to identify specific inhibitors of the Mpro of SARS-CoV-2 using a monocyclic peptide (sunflower trypsin inhibitor (SFTI)) phage display library. Initially, we expressed, purified and activated recombinant Mpro. The screening of the mutant SFTI phage display library using recombinant Mpro as a receptor resulted in the five most frequent SFTI mutant sequences. Synthetized mutant SFTIs did not inhibit Mpro protease using the fluorogenic substrate. However, the mutant SFTI 4 efficiently decreased the cleavage of recombinant human prothrombin as a substrate by Mpro, as confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Additionally, SFTI 4 presented a dissociation constant (KD) of 21.66 ± 6.66 µM for Mpro by surface plasmon resonance. Finally, 0.1 µM SFTI 4 reduced VERO cell infection by SARS-CoV-2 wt after 24 and 48 h. In conclusion, we successfully screened a monocyclic peptide library using phage display for the Mpro of SARS-CoV-2, suggesting that this methodology can be useful in identifying new inhibitors of viral enzymes.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Main protease (Mpro), also known as 3-chymotrypsin-like protease (3CLpro), is a nonstructural protein (NSP5) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the cleavage of virus polyproteins during viral replication at 11 sites, which generates 12 functional proteins. Mpro is a cysteine protease that presents specificity for the amino acid residue glutamine (Gln) at the P1 position of the substrate. Due to its essential role in processing the viral polyprotein for viral particle formation (assembly), Mpro inhibition has become an important tool to control coronavirus disease 2019 (COVID-19), since Mpro inhibitors act as antivirals. In this work, we proposed to identify specific inhibitors of the Mpro of SARS-CoV-2 using a monocyclic peptide (sunflower trypsin inhibitor (SFTI)) phage display library. Initially, we expressed, purified and activated recombinant Mpro. The screening of the mutant SFTI phage display library using recombinant Mpro as a receptor resulted in the five most frequent SFTI mutant sequences. Synthetized mutant SFTIs did not inhibit Mpro protease using the fluorogenic substrate. However, the mutant SFTI 4 efficiently decreased the cleavage of recombinant human prothrombin as a substrate by Mpro, as confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Additionally, SFTI 4 presented a dissociation constant (KD) of 21.66 ± 6.66 µM for Mpro by surface plasmon resonance. Finally, 0.1 µM SFTI 4 reduced VERO cell infection by SARS-CoV-2 wt after 24 and 48 h. In conclusion, we successfully screened a monocyclic peptide library using phage display for the Mpro of SARS-CoV-2, suggesting that this methodology can be useful in identifying new inhibitors of viral enzymes.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.