Reem Ahmad, Jessica Cantwell, Carolina Borrelli, Pei Lim, Derek D'Souza, Mark N Gaze, Syed Moinuddin, Jennifer Gains, Catarina Veiga
{"title":"Development of age-specific population-based paediatric computational phantoms for image-based data mining and other radiotherapy applications.","authors":"Reem Ahmad, Jessica Cantwell, Carolina Borrelli, Pei Lim, Derek D'Souza, Mark N Gaze, Syed Moinuddin, Jennifer Gains, Catarina Veiga","doi":"10.1088/2057-1976/ad8c4a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Computational anatomical models have many applications in paediatric radiotherapy. Age-specific computational anatomical models were historically developed to represent average and/or healthy individuals, where cancer patients may present with anatomical variations caused by the disease and/or treatment effects. We developed RT-PAL, a library of computational age-specific voxelized anatomical models tailored to represent the paediatric radiotherapy population.<i>Approach.</i>Data from patients undergoing craniospinal irradiation (CSI) were used (n = 74, median age 7.3y, range: 1-17y). The RT-PAL phantoms were generated using groupwise deformable image registration to spatially normalize and average a sub-set of twenty clinical CTs and contours (n = 74, median age 7.7y, range: 3-14 y). To assess their anatomical and age-dependency plausibility, the RT-PAL models were compared against clinical cancer patient data and two healthy population based libraries of phantoms: the International Commission on Radiological Protection (ICRP) pediatric reference computational phantoms (n = 8, median age 7.5y, range: 1-15y) and a range of 4D paediatric extended cardiac torso (XCAT) phantoms (n = 75, median age 9.1y, range: 1-18y). For each dataset, nineteen organs were segmented on all age models to determine their volume. Each set was evaluated through a linear fit of organ volume with age, where comparisons were made relative to the linear fit of the clinical data.<i>Main Results.</i>Overall good anatomical plausibility was found for the RT-PAL phantoms. The age-dependency reported was comparable to both the clinical data and other phantoms, demonstrating their efficacy as a library of age-specific phantoms. Larger discrepancies with the clinical, ICRP and XCAT organ data were attributable to differences in organ filling, segmentation strategy and age distribution of the datasets, limitations of RT-PAL generation methodology, and/or possible anatomical differences between healthy and cancer populations.<i>Significance.</i>The RT-PAL models showed potential in representing the paediatric radiotherapy cohort, who are most likely to benefit from dedicated, age-specific anatomical phantoms.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad8c4a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Computational anatomical models have many applications in paediatric radiotherapy. Age-specific computational anatomical models were historically developed to represent average and/or healthy individuals, where cancer patients may present with anatomical variations caused by the disease and/or treatment effects. We developed RT-PAL, a library of computational age-specific voxelized anatomical models tailored to represent the paediatric radiotherapy population.Approach.Data from patients undergoing craniospinal irradiation (CSI) were used (n = 74, median age 7.3y, range: 1-17y). The RT-PAL phantoms were generated using groupwise deformable image registration to spatially normalize and average a sub-set of twenty clinical CTs and contours (n = 74, median age 7.7y, range: 3-14 y). To assess their anatomical and age-dependency plausibility, the RT-PAL models were compared against clinical cancer patient data and two healthy population based libraries of phantoms: the International Commission on Radiological Protection (ICRP) pediatric reference computational phantoms (n = 8, median age 7.5y, range: 1-15y) and a range of 4D paediatric extended cardiac torso (XCAT) phantoms (n = 75, median age 9.1y, range: 1-18y). For each dataset, nineteen organs were segmented on all age models to determine their volume. Each set was evaluated through a linear fit of organ volume with age, where comparisons were made relative to the linear fit of the clinical data.Main Results.Overall good anatomical plausibility was found for the RT-PAL phantoms. The age-dependency reported was comparable to both the clinical data and other phantoms, demonstrating their efficacy as a library of age-specific phantoms. Larger discrepancies with the clinical, ICRP and XCAT organ data were attributable to differences in organ filling, segmentation strategy and age distribution of the datasets, limitations of RT-PAL generation methodology, and/or possible anatomical differences between healthy and cancer populations.Significance.The RT-PAL models showed potential in representing the paediatric radiotherapy cohort, who are most likely to benefit from dedicated, age-specific anatomical phantoms.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.