A class alignment network based on self-attention for cross-subject EEG classification.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Sufan Ma, Dongxiao Zhang, Jiayi Wang, Jialiang Xie
{"title":"A class alignment network based on self-attention for cross-subject EEG classification.","authors":"Sufan Ma, Dongxiao Zhang, Jiayi Wang, Jialiang Xie","doi":"10.1088/2057-1976/ad90e8","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the inherent variability in EEG signals across different individuals, domain adaptation and adversarial learning strategies are being progressively utilized to develop subject-specific classification models by leveraging data from other subjects. These approaches primarily focus on domain alignment and tend to overlook the critical task-specific class boundaries. This oversight can result in weak correlation between the extracted features and categories. To address these challenges, we propose a novel model that uses the known information from multiple subjects to bolster EEG classification for an individual subject through adversarial learning strategies. Our method begins by extracting both shallow and attention-driven deep features from EEG signals. Subsequently, we employ a class discriminator to encourage the same-class features from different domains to converge while ensuring that the different-class features diverge. This is achieved using our proposed discrimination loss function, which is designed to minimize the feature distance for samples of the same class across different domains while maximizing it for those from different classes. Additionally, our model incorporates two parallel classifiers that are harmonious yet distinct and jointly contribute to decision-making. Extensive testing on two publicly available EEG datasets has validated our model's efficacy and superiority.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad90e8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the inherent variability in EEG signals across different individuals, domain adaptation and adversarial learning strategies are being progressively utilized to develop subject-specific classification models by leveraging data from other subjects. These approaches primarily focus on domain alignment and tend to overlook the critical task-specific class boundaries. This oversight can result in weak correlation between the extracted features and categories. To address these challenges, we propose a novel model that uses the known information from multiple subjects to bolster EEG classification for an individual subject through adversarial learning strategies. Our method begins by extracting both shallow and attention-driven deep features from EEG signals. Subsequently, we employ a class discriminator to encourage the same-class features from different domains to converge while ensuring that the different-class features diverge. This is achieved using our proposed discrimination loss function, which is designed to minimize the feature distance for samples of the same class across different domains while maximizing it for those from different classes. Additionally, our model incorporates two parallel classifiers that are harmonious yet distinct and jointly contribute to decision-making. Extensive testing on two publicly available EEG datasets has validated our model's efficacy and superiority.

基于自我关注的类对齐网络,用于跨主体脑电图分类。
由于不同个体的脑电信号存在固有的变异性,人们正逐步采用领域适应和对抗学习策略,通过利用其他主体的数据来开发特定主体的分类模型。这些方法主要侧重于领域对齐,往往会忽略关键的特定任务类别边界。这种疏忽会导致提取的特征与类别之间的相关性较弱。为了应对这些挑战,我们提出了一种新颖的模型,利用来自多个受试者的已知信息,通过对抗学习策略来加强单个受试者的脑电图分类。我们的方法首先从脑电信号中提取浅层和注意力驱动的深层特征。随后,我们采用一个类别判别器来鼓励来自不同领域的同类特征趋同,同时确保不同类别的特征发散。这是通过我们提出的判别损失函数实现的,该函数旨在最小化不同域中同类样本的特征距离,同时最大化不同类样本的特征距离。此外,我们的模型还包含两个并行的分类器,它们既和谐又各不相同,共同为决策做出贡献。在两个公开的脑电图数据集上进行的广泛测试验证了我们模型的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信