Martin Helfrich, Roman Andriushchenko, Milan Češka, Jan Křetínský, Štefan Martiček, David Šafránek
{"title":"Abstraction-based segmental simulation of reaction networks using adaptive memoization.","authors":"Martin Helfrich, Roman Andriushchenko, Milan Češka, Jan Křetínský, Štefan Martiček, David Šafránek","doi":"10.1186/s12859-024-05966-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time.</p><p><strong>Results: </strong> We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently.</p><p><strong>Conclusion: </strong> We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"350"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05966-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Stochastic models are commonly employed in the system and synthetic biology to study the effects of stochastic fluctuations emanating from reactions involving species with low copy-numbers. Many important models feature complex dynamics, involving a state-space explosion, stiffness, and multimodality, that complicate the quantitative analysis needed to understand their stochastic behavior. Direct numerical analysis of such models is typically not feasible and generating many simulation runs that adequately approximate the model's dynamics may take a prohibitively long time.
Results: We propose a new memoization technique that leverages a population-based abstraction and combines previously generated parts of simulations, called segments, to generate new simulations more efficiently while preserving the original system's dynamics and its diversity. Our algorithm adapts online to identify the most important abstract states and thus utilizes the available memory efficiently.
Conclusion: We demonstrate that in combination with a novel fully automatic and adaptive hybrid simulation scheme, we can speed up the generation of trajectories significantly and correctly predict the transient behavior of complex stochastic systems.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.