Eugene Lee, Jae-Hun Ahn, Byeong-Cheol Kang, Hyun Soon Lee
{"title":"Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy.","authors":"Eugene Lee, Jae-Hun Ahn, Byeong-Cheol Kang, Hyun Soon Lee","doi":"10.1089/ars.2023.0431","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Adaptation to oxidative stress is essential for maintaining protein and redox homeostasis in mammalian cells. Palmitic acid (PA) plays a central role in oxidative stress and immunoproteasome regulation in podocytes and diabetes, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial impact on diabetes. The role of Nrf2 in adaptation to oxidative stress and regulation of immunoproteasome by PA and EPA/DHA in podocytes and diabetic kidneys is not well defined. The present study describes the effect of PA- and EPA/DHA-induced oxidative stress in regulating Nrf2/immuoproteasome pathway in a model system relevant to diabetic nephropathy (DN). <b><i>Results:</i></b> Short PA exposure to podocytes promotes the upregulation of antioxidant proteins and immunoproteasome mediated by Nrf2, leading to acute transient oxidative stress adaptation. Both short- and long-term incubation of EPA or DHA in podocytes induced oxidative stress and activation of Nrf2, causing persistent oxidative stress adaptation. Long PA exposure to podocytes decreased the Nrf2 activity, and EPA/DHA attenuated these effects of PA. In <i>db/db</i> mice, feeding of EPA/DHA-rich fish oil increased oxidative stress in kidneys and induced renal cortical Nrf2 nuclear translocation and immunoproteasome overexpression, inhibiting the progression of DN. <b><i>Innovation and Conclusion:</i></b> We demonstrate an oxidative stress adaptation mechanism by PA and EPA/DHA regulated by Nrf2 in podocytes and kidneys of type 2 diabetes. This work provides an important insight into the pathogenetic mechanisms of DN by PA-induced oxidative stress. We conclude that activation of Nrf2-immunoproteasome signaling pathway by EPA/DHA plays a crucial role in abrogating the proteotoxic stress in DN. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0431","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Adaptation to oxidative stress is essential for maintaining protein and redox homeostasis in mammalian cells. Palmitic acid (PA) plays a central role in oxidative stress and immunoproteasome regulation in podocytes and diabetes, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial impact on diabetes. The role of Nrf2 in adaptation to oxidative stress and regulation of immunoproteasome by PA and EPA/DHA in podocytes and diabetic kidneys is not well defined. The present study describes the effect of PA- and EPA/DHA-induced oxidative stress in regulating Nrf2/immuoproteasome pathway in a model system relevant to diabetic nephropathy (DN). Results: Short PA exposure to podocytes promotes the upregulation of antioxidant proteins and immunoproteasome mediated by Nrf2, leading to acute transient oxidative stress adaptation. Both short- and long-term incubation of EPA or DHA in podocytes induced oxidative stress and activation of Nrf2, causing persistent oxidative stress adaptation. Long PA exposure to podocytes decreased the Nrf2 activity, and EPA/DHA attenuated these effects of PA. In db/db mice, feeding of EPA/DHA-rich fish oil increased oxidative stress in kidneys and induced renal cortical Nrf2 nuclear translocation and immunoproteasome overexpression, inhibiting the progression of DN. Innovation and Conclusion: We demonstrate an oxidative stress adaptation mechanism by PA and EPA/DHA regulated by Nrf2 in podocytes and kidneys of type 2 diabetes. This work provides an important insight into the pathogenetic mechanisms of DN by PA-induced oxidative stress. We conclude that activation of Nrf2-immunoproteasome signaling pathway by EPA/DHA plays a crucial role in abrogating the proteotoxic stress in DN. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology