Julie Leroux, Pascale B Beauregard, Jean-Philippe Bellenger
{"title":"<i>Azotobacter vinelandii</i> N<sub>2</sub> fixation increases in co-culture with the PGPR <i>Bacillus subtilis</i> in a nitrogen concentration-dependent manner.","authors":"Julie Leroux, Pascale B Beauregard, Jean-Philippe Bellenger","doi":"10.1128/aem.01528-24","DOIUrl":null,"url":null,"abstract":"<p><p>Biological nitrogen fixation (BNF) is an essential source of new nitrogen (N) for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighboring bacteria on N<sub>2</sub> fixer activity remains limited. Here, we explored this question using a co-culture of the two model species: the free-living diazotroph <i>Azotobacter vinelandii</i> and the non-fixing plant growth-promoting rhizobacteria <i>Bacillus subtilis</i>. We observed that the interaction between the two bacteria was modulated by N availability. Under N-replete conditions, <i>B. subtilis</i> outcompeted <i>A. vinelandii</i> in the co-culture. Under N-limiting conditions, BNF activity by <i>A. vinelandii</i> was enhanced in the presence of <i>B. subtilis</i>. Reciprocally, the presence of <i>A. vinelandii</i> repressed sporulation by <i>B. subtilis</i> and supported its growth likely through N transfer. N inputs by <i>A. vinelandii</i> were doubled in the presence of <i>B. subtilis</i> compared to the monoculture, primarily due to the retention of a robust N<sub>2</sub> fixation activity in the stationary phase. A proteomic analysis revealed that <i>A. vinelandii</i> N metabolism, particularly the molybdenum nitrogenase isoform protein levels (NifK and NifD), was upregulated during the stationary growth phase in the presence of <i>B. subtilis</i>. This study revealed that N stress drives bacterial interactions and activity in a two-species community, especially in the stationary phase.</p><p><strong>Importance: </strong>Reducing inputs of chemical N fertilizers is essential to develop a more sustainable agriculture. The stimulation of biological nitrogen fixation by N2 fixers in multispecies cultures, here the plant growth-promoting rhizobacteria <i>Azotobacter vinelandii</i> and <i>Bacillus subtilis</i>, opens opportunities for the formulation of biofertilizers consortia. While most research on N2 fixation historically focussed on the exponential growth phase of microorganisms, we observed that <i>Bacillus subtilis</i> stimulated <i>Azotobacter vinelandii</i> N2 fixation mostly during the stationary phase. This result highlights that more research on the factors controlling N2 fixation repression during the stationary growth phase, especially bacteria-bacteria interactions, is eagerly needed.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0152824"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01528-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological nitrogen fixation (BNF) is an essential source of new nitrogen (N) for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighboring bacteria on N2 fixer activity remains limited. Here, we explored this question using a co-culture of the two model species: the free-living diazotroph Azotobacter vinelandii and the non-fixing plant growth-promoting rhizobacteria Bacillus subtilis. We observed that the interaction between the two bacteria was modulated by N availability. Under N-replete conditions, B. subtilis outcompeted A. vinelandii in the co-culture. Under N-limiting conditions, BNF activity by A. vinelandii was enhanced in the presence of B. subtilis. Reciprocally, the presence of A. vinelandii repressed sporulation by B. subtilis and supported its growth likely through N transfer. N inputs by A. vinelandii were doubled in the presence of B. subtilis compared to the monoculture, primarily due to the retention of a robust N2 fixation activity in the stationary phase. A proteomic analysis revealed that A. vinelandii N metabolism, particularly the molybdenum nitrogenase isoform protein levels (NifK and NifD), was upregulated during the stationary growth phase in the presence of B. subtilis. This study revealed that N stress drives bacterial interactions and activity in a two-species community, especially in the stationary phase.
Importance: Reducing inputs of chemical N fertilizers is essential to develop a more sustainable agriculture. The stimulation of biological nitrogen fixation by N2 fixers in multispecies cultures, here the plant growth-promoting rhizobacteria Azotobacter vinelandii and Bacillus subtilis, opens opportunities for the formulation of biofertilizers consortia. While most research on N2 fixation historically focussed on the exponential growth phase of microorganisms, we observed that Bacillus subtilis stimulated Azotobacter vinelandii N2 fixation mostly during the stationary phase. This result highlights that more research on the factors controlling N2 fixation repression during the stationary growth phase, especially bacteria-bacteria interactions, is eagerly needed.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.