Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy.

IF 4.4 2区 医学 Q1 CLINICAL NEUROLOGY
Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G Ly, Cecil D Hahn, Vann Chau, Sampsa Vanhatalo, Emily W Y Tam
{"title":"Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy.","authors":"Micheline Lagacé, Saeed Montazeri, Daphne Kamino, Eva Mamak, Linh G Ly, Cecil D Hahn, Vann Chau, Sampsa Vanhatalo, Emily W Y Tam","doi":"10.1002/acn3.52233","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.</p><p><strong>Methods: </strong>Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories \"Severe impairment\" (Bayley-III composite score ≤70 or death) or \"Any impairment\" (score ≤85 or death).</p><p><strong>Results: </strong>\"Severe impairment\" was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). \"Any impairment\" was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.</p><p><strong>Interpretation: </strong>BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</p>","PeriodicalId":126,"journal":{"name":"Annals of Clinical and Translational Neurology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical and Translational Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acn3.52233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.

Methods: Trends of BSN, a deep learning-based measure translating EEG background to a continuous trend, were studied from a three-channel montage long-term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley-III) at 18 months. Outcome prediction used categories "Severe impairment" (Bayley-III composite score ≤70 or death) or "Any impairment" (score ≤85 or death).

Results: "Severe impairment" was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). "Any impairment" was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.

Interpretation: BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.

自动评估脑电图背景以预测新生儿脑病的神经发育。
目的:评估新生儿脑状态(BSN)预测新生儿脑病神经发育结局的能力:评估新生儿脑状态(BSN)预测新生儿脑病神经发育结果的能力:BSN是一种基于深度学习的测量方法,可将脑电图背景转化为连续趋势,我们通过对92名新生儿脑病患儿的前瞻性队列进行三通道蒙太奇长期脑电图监测,研究了BSN的趋势,并通过贝利婴儿发育量表第三版(Bayley-III)评估了患儿18个月时的神经发育结果。结果预测采用 "严重损伤"(Bayley-III 综合评分≤70 分或死亡)或 "任何损伤"(评分≤85 分或死亡)类别:结果:"严重损伤 "对运动结果的预测效果最好(24 小时曲线下面积 (AUC) = 0.97),其次是认知(36 小时曲线下面积 = 0.90)、整体(24 小时曲线下面积 = 0.84)和语言(24 小时曲线下面积 = 0.82)。"任何损伤 "对运动结果的预测效果最佳(12 h AUC = 0.95),其次是认知(24 h AUC = 0.85)、整体(12 h AUC = 0.75)和语言(12 和 24 h AUC = 0.68)。预测结果的最佳 BSN 临界值随产后年龄而变化。BSN 分数低的婴儿在出生后 24 小时内对不良预后的预测阳性率达到 100%:BSN能很好地预测治疗性低温后新生儿脑病幸存者的不良神经发育结局,即使是在出生后24小时。该趋势可对脑电图背景进行全自动、客观、量化和可靠的解读。在最初的动态恢复阶段,高时间分辨率支持连续的床旁脑部评估和早期预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Clinical and Translational Neurology
Annals of Clinical and Translational Neurology Medicine-Neurology (clinical)
CiteScore
9.10
自引率
1.90%
发文量
218
审稿时长
8 weeks
期刊介绍: Annals of Clinical and Translational Neurology is a peer-reviewed journal for rapid dissemination of high-quality research related to all areas of neurology. The journal publishes original research and scholarly reviews focused on the mechanisms and treatments of diseases of the nervous system; high-impact topics in neurologic education; and other topics of interest to the clinical neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信