Bree Heestand, Ben McCarthy, Matt Simon, Evan H Lister-Shimauchi, Stephen Frenk, Shawn Ahmed
{"title":"Piwi mutant germ cells transmit a form of heritable stress that promotes longevity.","authors":"Bree Heestand, Ben McCarthy, Matt Simon, Evan H Lister-Shimauchi, Stephen Frenk, Shawn Ahmed","doi":"10.1111/acel.14350","DOIUrl":null,"url":null,"abstract":"<p><p>The C. elegans Argonaute protein PRG-1/Piwi and associated piRNAs protect metazoan genomes by silencing transposons and other types of foreign DNA. As prg-1 mutants are propagated, their fertility deteriorates prior to the onset of a reproductive arrest phenotype that resembles a starvation-induced stress response. We found that late-generation prg-1 mutants with substantially reduced fertility were long-lived, whereas early- or mid-generation prg-1 mutants had normal lifespans. Loss of the stress response transcription factor DAF-16 caused mid- or late-generation prg-1 mutants to live very short lives, whereas overexpression of DAF-16 enabled both mid- and late-generation prg-1 mutants to live long. Cytoplasmic P-bodies that respond to stress increased in long-lived late-generation prg-1 mutants and were transmitted to F1 but not F2 cross-progeny. Moreover, moderate levels of heritable stress shorten late-generation prg-1 mutant longevity when DAF-16 or P bodies are deficient. Together, these results suggest that the longevity of late-generation prg-1 mutants is a hormetic stress response. However, dauer larvae that occur in response to stress were not observed in late-generation prg-1 mutants. Small germ cell nucleoli that depended on germline DAF-16 were present in late-generation prg-1 mutants but were not necessary for their longevity. We propose that prg-1 mutant germ cells transmit a form of heritable stress, high levels of which promote longevity and strongly reduce fertility. The heritable stress transmitted by prg-1/Piwi mutant germ cells may be generally relevant to epigenetic inheritance of longevity.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14350"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14350","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The C. elegans Argonaute protein PRG-1/Piwi and associated piRNAs protect metazoan genomes by silencing transposons and other types of foreign DNA. As prg-1 mutants are propagated, their fertility deteriorates prior to the onset of a reproductive arrest phenotype that resembles a starvation-induced stress response. We found that late-generation prg-1 mutants with substantially reduced fertility were long-lived, whereas early- or mid-generation prg-1 mutants had normal lifespans. Loss of the stress response transcription factor DAF-16 caused mid- or late-generation prg-1 mutants to live very short lives, whereas overexpression of DAF-16 enabled both mid- and late-generation prg-1 mutants to live long. Cytoplasmic P-bodies that respond to stress increased in long-lived late-generation prg-1 mutants and were transmitted to F1 but not F2 cross-progeny. Moreover, moderate levels of heritable stress shorten late-generation prg-1 mutant longevity when DAF-16 or P bodies are deficient. Together, these results suggest that the longevity of late-generation prg-1 mutants is a hormetic stress response. However, dauer larvae that occur in response to stress were not observed in late-generation prg-1 mutants. Small germ cell nucleoli that depended on germline DAF-16 were present in late-generation prg-1 mutants but were not necessary for their longevity. We propose that prg-1 mutant germ cells transmit a form of heritable stress, high levels of which promote longevity and strongly reduce fertility. The heritable stress transmitted by prg-1/Piwi mutant germ cells may be generally relevant to epigenetic inheritance of longevity.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.