Abdelrahman Hamdi, Samar S Tawfik, Ahmed R Ali, Wafaa A Ewes, Abdullah Haikal, Adel S El-Azab, Ahmed H Bakheit, Mohamed M Hefnawy, Hazem A Ghabbour, Alaa A-M Abdel-Aziz
{"title":"Harnessing potential COX-2 engagement for boosting anticancer activity of substituted 2-mercapto-4(3H)-quinazolinones with promising EGFR/VEGFR-2 inhibitory activities.","authors":"Abdelrahman Hamdi, Samar S Tawfik, Ahmed R Ali, Wafaa A Ewes, Abdullah Haikal, Adel S El-Azab, Ahmed H Bakheit, Mohamed M Hefnawy, Hazem A Ghabbour, Alaa A-M Abdel-Aziz","doi":"10.1016/j.bioorg.2024.107951","DOIUrl":null,"url":null,"abstract":"<p><p>We designed and synthesized new quinazolinone-tethered phenyl thiourea/thiadiazole derivatives 4-26. Based on their structural characteristics, these compounds were proposed to have a multi-target mode of action for their anticancer activities. Using the MTT assay method, antiproliferative effects were assessed against three human cancer cell lines (HEPG-2, MCF-7, and HCT-116). In vitro assessment for enzymatic inhibitory activity of the most active compounds 4, 9 and 20 was done for EGFR, VEGFR-2 and COX-2 as potential targets. The screened compounds showed low micromolar IC<sub>50</sub> inhibitory effects against the three targets. Compound 9 demonstrated similar EGFR/VEGFR-2 inhibitory effect to the control drugs and potential inhibitory activity for COX-2 enzyme. In MCF-7 cells, the most active analog 9 caused 41.02% total apoptosis, and arrested the cell cycle at the G2/M phase. Taken as a whole, the findings of this study provide significant new understandings into the relationship between COX inhibition and cancer therapy. Furthermore, the outcomes showcased the encouraging efficacy of these compounds with a multi-target mechanism, making them excellent choices for additional research and development into possible anticancer drug.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107951","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We designed and synthesized new quinazolinone-tethered phenyl thiourea/thiadiazole derivatives 4-26. Based on their structural characteristics, these compounds were proposed to have a multi-target mode of action for their anticancer activities. Using the MTT assay method, antiproliferative effects were assessed against three human cancer cell lines (HEPG-2, MCF-7, and HCT-116). In vitro assessment for enzymatic inhibitory activity of the most active compounds 4, 9 and 20 was done for EGFR, VEGFR-2 and COX-2 as potential targets. The screened compounds showed low micromolar IC50 inhibitory effects against the three targets. Compound 9 demonstrated similar EGFR/VEGFR-2 inhibitory effect to the control drugs and potential inhibitory activity for COX-2 enzyme. In MCF-7 cells, the most active analog 9 caused 41.02% total apoptosis, and arrested the cell cycle at the G2/M phase. Taken as a whole, the findings of this study provide significant new understandings into the relationship between COX inhibition and cancer therapy. Furthermore, the outcomes showcased the encouraging efficacy of these compounds with a multi-target mechanism, making them excellent choices for additional research and development into possible anticancer drug.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.