Rafael S. Pinto , João P. Serra , João C. Barbosa , Maria M. Silva , Manuel Salado , Arkaitz Fidalgo Marijuan , Eder Amayuelas , Yaroslav Grosu , Renato Gonçalves , Senentxu Lanceros-Mendez , Carlos M. Costa
{"title":"Tailoring poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) membrane microstructure for lithium-ion battery separator applications","authors":"Rafael S. Pinto , João P. Serra , João C. Barbosa , Maria M. Silva , Manuel Salado , Arkaitz Fidalgo Marijuan , Eder Amayuelas , Yaroslav Grosu , Renato Gonçalves , Senentxu Lanceros-Mendez , Carlos M. Costa","doi":"10.1016/j.jcis.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>Novel battery separators based on poly(vinylidene fluoride-<em>co</em>-trifluoroethylene-chlorofluoroethylene)– P(VDF-TrFE-CFE)- were produced by different processing techniques (non-solvent and thermally induced phase separation, salt leaching and electrospinning), in order to evaluate their effect on separator morphology, degree of porosity and pore size, electrochemical parameters and battery cycling behavior. It has been demonstrated that the different processing techniques have a significant influence on the morphology and mechanical properties of membranes. The degree of porosity varies between 23 % and 66 %, for membranes obtained by salt leaching and thermally induced phase separation, respectively.</div><div>The membranes present a high ionic conductivity value ranging between 1.8 mS.cm<sup>−1</sup> for the electrospun membrane and 0.20 mS.cm<sup>−1</sup> for the membrane processed by thermally induced phase separator. The lithium transference number value for all membranes is above 0.20, the highest value of 0.55 being obtained for samples prepared by salt leaching and thermally induced phase separation.</div><div>For all membranes, battery capacity values have been obtained at different C-rates with excellent reversibility. P(VDF-TrFE-CFE) samples present an excellent battery performance at 1C-rate after 100 cycles with 74 mAh.g<sup>−1</sup> and excellent coulombic efficiency, for membrane processed by the salt leaching technique. This work demonstrates that P(VDF-TrFE-CFE) terpolymer can be used as a porous membrane in lithium-ion battery separator application, the membrane processing technique allowing to tailor its morphology and, consequently, battery performance.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 714-724"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025712","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel battery separators based on poly(vinylidene fluoride-co-trifluoroethylene-chlorofluoroethylene)– P(VDF-TrFE-CFE)- were produced by different processing techniques (non-solvent and thermally induced phase separation, salt leaching and electrospinning), in order to evaluate their effect on separator morphology, degree of porosity and pore size, electrochemical parameters and battery cycling behavior. It has been demonstrated that the different processing techniques have a significant influence on the morphology and mechanical properties of membranes. The degree of porosity varies between 23 % and 66 %, for membranes obtained by salt leaching and thermally induced phase separation, respectively.
The membranes present a high ionic conductivity value ranging between 1.8 mS.cm−1 for the electrospun membrane and 0.20 mS.cm−1 for the membrane processed by thermally induced phase separator. The lithium transference number value for all membranes is above 0.20, the highest value of 0.55 being obtained for samples prepared by salt leaching and thermally induced phase separation.
For all membranes, battery capacity values have been obtained at different C-rates with excellent reversibility. P(VDF-TrFE-CFE) samples present an excellent battery performance at 1C-rate after 100 cycles with 74 mAh.g−1 and excellent coulombic efficiency, for membrane processed by the salt leaching technique. This work demonstrates that P(VDF-TrFE-CFE) terpolymer can be used as a porous membrane in lithium-ion battery separator application, the membrane processing technique allowing to tailor its morphology and, consequently, battery performance.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies