Stabilizing zinc powder anodes via bifunctional MXene towards flexible zinc-ion batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zixuan Yang , Zhiyu Wang , Junlun Cao , Shana Wang , Weiwei Lei , Xungai Wang , Dan Liu
{"title":"Stabilizing zinc powder anodes via bifunctional MXene towards flexible zinc-ion batteries","authors":"Zixuan Yang ,&nbsp;Zhiyu Wang ,&nbsp;Junlun Cao ,&nbsp;Shana Wang ,&nbsp;Weiwei Lei ,&nbsp;Xungai Wang ,&nbsp;Dan Liu","doi":"10.1016/j.jcis.2024.10.145","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible zinc (Zn) batteries have gained considerable attention as wearable energy storage devices because of their inherent safety and high theoretical capacity. However, conventional Zn anodes suffer from dendrite growth, high rigidity, and poor cycling stability issues, hindering their practical application in flexible zinc-ion batteries. Herein, a dendrite-free and flexible Zn anode is designed using direct ink writing (DIW) printed MXene as a flexible and highly conductive current collector and MXene-wrapped Zn powder (ZnP) as the active material by carefully optimising the rheological properties of MXene-based dispersion. As a result, the synergistic effects of the MXene-based current collector and the MXene protective layer promoted dendrite-free Zn deposition and prevented side reactions, achieving an outstanding cycling performance that exceeded 130 h at a high depth of discharge of 30%. When paired with a Vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>)-based cathode, the flexible full cell demonstrated stable electrochemical performance under mechanical deformation and can power electronic devices, presenting a promising pathway for the development of flexible zinc-ion batteries.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 657-664"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible zinc (Zn) batteries have gained considerable attention as wearable energy storage devices because of their inherent safety and high theoretical capacity. However, conventional Zn anodes suffer from dendrite growth, high rigidity, and poor cycling stability issues, hindering their practical application in flexible zinc-ion batteries. Herein, a dendrite-free and flexible Zn anode is designed using direct ink writing (DIW) printed MXene as a flexible and highly conductive current collector and MXene-wrapped Zn powder (ZnP) as the active material by carefully optimising the rheological properties of MXene-based dispersion. As a result, the synergistic effects of the MXene-based current collector and the MXene protective layer promoted dendrite-free Zn deposition and prevented side reactions, achieving an outstanding cycling performance that exceeded 130 h at a high depth of discharge of 30%. When paired with a Vanadium pentoxide (V2O5)-based cathode, the flexible full cell demonstrated stable electrochemical performance under mechanical deformation and can power electronic devices, presenting a promising pathway for the development of flexible zinc-ion batteries.

Abstract Image

通过双功能 MXene 稳定锌粉阳极,实现柔性锌-离子电池。
柔性锌(Zn)电池因其固有的安全性和较高的理论容量,作为可穿戴式储能设备受到了广泛关注。然而,传统的锌阳极存在枝晶生长、高刚性和循环稳定性差等问题,阻碍了其在柔性锌离子电池中的实际应用。在本文中,通过精心优化 MXene 基分散体的流变特性,设计出了一种无枝晶的柔性锌阳极,它采用直接油墨写入(DIW)印刷 MXene 作为柔性高导电集流体,并采用 MXene 包裹锌粉(ZnP)作为活性材料。结果,基于 MXene 的集流器和 MXene 保护层的协同效应促进了无枝晶的锌沉积并防止了副反应,在 30% 的高放电深度下实现了超过 130 小时的出色循环性能。与基于五氧化二钒(V2O5)的阴极搭配使用时,柔性全电池在机械变形条件下表现出稳定的电化学性能,并能为电子设备供电,为柔性锌离子电池的开发提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信