Wenting Wu , Chao Peng , Ying Wang , Jing Li , Erkang Wang
{"title":"Building hydrophobic substrate pocket to boost activity of laccase-like nanozyme through acetonitrile-mediated strategy","authors":"Wenting Wu , Chao Peng , Ying Wang , Jing Li , Erkang Wang","doi":"10.1016/j.jcis.2024.11.021","DOIUrl":null,"url":null,"abstract":"<div><div>Nanozymes, as promising alternatives to natural enzymes, offer several advantages with biocatalytic functions but remain inferior in catalytic activity. It is crucial to focus on factors that affect the enzymatic activity of nanozymes and develop strategies to make them more competitive with natural enzymes. Herein, CuV<sub>2</sub>O<sub>5</sub> nanorods are confirmed to own the intrinsic laccase-like activity, and an acetonitrile (MeCN)-mediated strategy is proposed for reaction acceleration by mimicking the enzymatic substrate pocket. In the presence of MeCN, the interaction between substrates and nanozymes gets efficiently promoted by the bridging function of cyano-group, where the utilization of Cu active sites is greatly improved due to the condensed hydrophobic substrate layers formed in the vicinity of CuV<sub>2</sub>O<sub>5</sub> nanorods by the solvent effect of MeCN. Theoretical calculations also disclose that the addition of MeCN endows 2,4-dichlorophenol (2,4-DP) with a lower free-energy barrier in adsorption and activation on the surface of CuV<sub>2</sub>O<sub>5</sub> nanozyme. Benefiting from the improved activity, a sensitive colorimetric sensing platform for 2,4-DP is constructed with the limit of detection as low as 0.48 μM. Our finding lays a theoretical foundation for achieving high-performance catalytical activity of the nanozymes based on the modulation of the reaction microenvironment, effectively alleviating the complex engineering process of nanozymes.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 785-794"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025785","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes, as promising alternatives to natural enzymes, offer several advantages with biocatalytic functions but remain inferior in catalytic activity. It is crucial to focus on factors that affect the enzymatic activity of nanozymes and develop strategies to make them more competitive with natural enzymes. Herein, CuV2O5 nanorods are confirmed to own the intrinsic laccase-like activity, and an acetonitrile (MeCN)-mediated strategy is proposed for reaction acceleration by mimicking the enzymatic substrate pocket. In the presence of MeCN, the interaction between substrates and nanozymes gets efficiently promoted by the bridging function of cyano-group, where the utilization of Cu active sites is greatly improved due to the condensed hydrophobic substrate layers formed in the vicinity of CuV2O5 nanorods by the solvent effect of MeCN. Theoretical calculations also disclose that the addition of MeCN endows 2,4-dichlorophenol (2,4-DP) with a lower free-energy barrier in adsorption and activation on the surface of CuV2O5 nanozyme. Benefiting from the improved activity, a sensitive colorimetric sensing platform for 2,4-DP is constructed with the limit of detection as low as 0.48 μM. Our finding lays a theoretical foundation for achieving high-performance catalytical activity of the nanozymes based on the modulation of the reaction microenvironment, effectively alleviating the complex engineering process of nanozymes.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies