Artificial light-harvesting system with sequential energy transfer in photocatalytic CP coupling based on supramolecular organic framework of triphenylamine
Xuan-Zong Yang , Zhao-Gao Zhang , Cheng-Long Xin , Hui Liu , Shengsheng Yu , Ling-Bao Xing
{"title":"Artificial light-harvesting system with sequential energy transfer in photocatalytic CP coupling based on supramolecular organic framework of triphenylamine","authors":"Xuan-Zong Yang , Zhao-Gao Zhang , Cheng-Long Xin , Hui Liu , Shengsheng Yu , Ling-Bao Xing","doi":"10.1016/j.jcis.2024.11.028","DOIUrl":null,"url":null,"abstract":"<div><div>Porous structures exhibit an increased access surface area, thereby promoting the efficient transportation of active oxygen species. Reinforcing the development of artificial light-harvesting systems (LHSs) with porous structured supramolecular organic frameworks (SOFs) as the energy donor can significantly enhance its photocatalytic performance, thereby facilitating efficient organic transformation via photocatalysis. In this investigation, we have successfully fabricated a supramolecular organic framework (MT-SOF) composed of cucurbit[8]uril (CB[8]) and triphenylamine derivative (MeTPPA). Because of the framework structure and large ring restriction in MT-SOF, its fluorescence emission shows a significant increase when compared to that of the individual MeTPPA molecule. By harnessing the remarkable fluorescence emission characteristics of MT-SOF, it was employed as an energy donor in conjunction with Sulforhodamine 101 (SR101) and Cyanine 5 (Cy5) as acceptors to fabricate sequential energy transfer LHS. MT-SOF-SR101-Cy5 has the ability to act as a photosensitizer, facilitating the C<img>P bond coupling with broad applicability. It is important to mention that when compared to MeTPPA, MT-SOF and MT-SOF-SR101, the photocatalytic performance of MT-SOF-SR101-Cy5, featuring continuous two-step energy transfer, shows significant improvement, which can be attributed to the porous structure of MT-SOF and the increased efficiency in generating superoxide anion radical (O<sub>2</sub><sup><img>−</sup>).</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 587-595"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025852","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Porous structures exhibit an increased access surface area, thereby promoting the efficient transportation of active oxygen species. Reinforcing the development of artificial light-harvesting systems (LHSs) with porous structured supramolecular organic frameworks (SOFs) as the energy donor can significantly enhance its photocatalytic performance, thereby facilitating efficient organic transformation via photocatalysis. In this investigation, we have successfully fabricated a supramolecular organic framework (MT-SOF) composed of cucurbit[8]uril (CB[8]) and triphenylamine derivative (MeTPPA). Because of the framework structure and large ring restriction in MT-SOF, its fluorescence emission shows a significant increase when compared to that of the individual MeTPPA molecule. By harnessing the remarkable fluorescence emission characteristics of MT-SOF, it was employed as an energy donor in conjunction with Sulforhodamine 101 (SR101) and Cyanine 5 (Cy5) as acceptors to fabricate sequential energy transfer LHS. MT-SOF-SR101-Cy5 has the ability to act as a photosensitizer, facilitating the CP bond coupling with broad applicability. It is important to mention that when compared to MeTPPA, MT-SOF and MT-SOF-SR101, the photocatalytic performance of MT-SOF-SR101-Cy5, featuring continuous two-step energy transfer, shows significant improvement, which can be attributed to the porous structure of MT-SOF and the increased efficiency in generating superoxide anion radical (O2−).
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies