{"title":"Engineering highly efficient porphyrin sensitizers through metal, ligand and bridge modification: a DFT study†","authors":"Hemjot Kaur and Neetu Goel","doi":"10.1039/D4CP03473B","DOIUrl":null,"url":null,"abstract":"<p >This work presents a systematic investigation of porphyrin sensitizers for application in dye-sensitized solar cells (DSSCs). Density functional theory calculations, including both static and time-dependent methods, were employed to evaluate a series of candidate dyes for their potential to achieve high power conversion efficiency. The well-established SM315 dye, known for its record-breaking PCE of 13%, was adopted as a reference point. A range of metal atoms including alkaline-earth and 3d transition metals were screened, Ca was identified as the most promising metal for light capture and conversion. Ca–porphyrin-based sensitizer was further modified by introducing different axial ligands and four distinct bridging units. The designed dyes exhibit red-shifted absorption spectra and optimal frontier orbital alignment with the semiconductor's conduction band, promoting efficient light capture and charge transfer. In addition to these core parameters, a comprehensive analysis of light harvesting efficiency (LHE), reorganization energy (<em>λ</em>), short-circuit current density (<em>J</em><small><sub>SC</sub></small>), exciton binding energy (EBE), open-circuit voltage (<em>V</em><small><sub>OC</sub></small>), electron transfer rate (<em>k</em>), polarization (<em>α</em>) and hyperpolarization (<em>β</em><small><sub>tot</sub></small>) collectively paint a clear picture of superior light capture, efficient charge transport dynamics, and minimized energy losses within the designed dyes. This ultimately translates to the remarkable power conversion efficiency (PCE) exceeding 27% achieved by the specifically designed dye with the Ca as metal atom, 4,4′-bipyridine as axial ligands and cyclopenta-1,3-diene as bridging unit, surpassing the performance of SM315 dye (13% PCE). This systematic study combines the design of high-performance porphyrin sensitizers through molecular engineering with a comprehensive investigation of their impact on DSSC function using advanced computational methods.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 47","pages":" 29311-29327"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp03473b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a systematic investigation of porphyrin sensitizers for application in dye-sensitized solar cells (DSSCs). Density functional theory calculations, including both static and time-dependent methods, were employed to evaluate a series of candidate dyes for their potential to achieve high power conversion efficiency. The well-established SM315 dye, known for its record-breaking PCE of 13%, was adopted as a reference point. A range of metal atoms including alkaline-earth and 3d transition metals were screened, Ca was identified as the most promising metal for light capture and conversion. Ca–porphyrin-based sensitizer was further modified by introducing different axial ligands and four distinct bridging units. The designed dyes exhibit red-shifted absorption spectra and optimal frontier orbital alignment with the semiconductor's conduction band, promoting efficient light capture and charge transfer. In addition to these core parameters, a comprehensive analysis of light harvesting efficiency (LHE), reorganization energy (λ), short-circuit current density (JSC), exciton binding energy (EBE), open-circuit voltage (VOC), electron transfer rate (k), polarization (α) and hyperpolarization (βtot) collectively paint a clear picture of superior light capture, efficient charge transport dynamics, and minimized energy losses within the designed dyes. This ultimately translates to the remarkable power conversion efficiency (PCE) exceeding 27% achieved by the specifically designed dye with the Ca as metal atom, 4,4′-bipyridine as axial ligands and cyclopenta-1,3-diene as bridging unit, surpassing the performance of SM315 dye (13% PCE). This systematic study combines the design of high-performance porphyrin sensitizers through molecular engineering with a comprehensive investigation of their impact on DSSC function using advanced computational methods.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.