Enhanced Thermoelectric Performance of Bi-Based Half-Heusler Compounds XYBi (X: Ti, Zr, Hf; Y: Co, Rh, Ir)

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sayan Paul, Supriya Ghosal and Swapan K. Pati*, 
{"title":"Enhanced Thermoelectric Performance of Bi-Based Half-Heusler Compounds XYBi (X: Ti, Zr, Hf; Y: Co, Rh, Ir)","authors":"Sayan Paul,&nbsp;Supriya Ghosal and Swapan K. Pati*,&nbsp;","doi":"10.1021/acsaem.4c0165210.1021/acsaem.4c01652","DOIUrl":null,"url":null,"abstract":"<p >Over the past few decades, Half-Heusler materials have garnered significant research attention for thermoelectric applications due to their cost-effectiveness, high thermal stability, mechanical strength, high power factor (<i>PF</i>), nontoxicity and moderate efficiency. Here, using first-principles density functional theory combined with the semiclassical Boltzmann transport equations, we systematically studied the thermoelectric properties of nine Bi-based Half-Heusler compounds, <i>XY</i>Bi (where, <i>X</i>=Ti, Zr, Hf; <i>Y</i>=Co, Rh, Ir). We demonstrate that these compounds exhibit a moderate band gap (<i>E</i><sub><i>g</i></sub>) and an exceptionally high power factor (<i>PF</i>), outperforming many conventional thermoelectric materials. The high power factor primarily stems from the very high charge carrier concentration and high electrical conductivity. However, these Half-Heusler compounds show moderate thermal conductivity (κ). Based on our calculations, these Bi-based Half-Heusler compounds exhibit sufficiently high <i>ZT</i> values ranging from 0.56 to 1.98, with the highest values being 1.98 and 1.93 for n-type ZrRhBi and p-type HfRhBi, respectively. Our work reveals the inherent high <i>ZT</i> values in these previously less-explored Bi-based Half-Heusler compounds, indicating their strong potential for high-performance thermoelectric device applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past few decades, Half-Heusler materials have garnered significant research attention for thermoelectric applications due to their cost-effectiveness, high thermal stability, mechanical strength, high power factor (PF), nontoxicity and moderate efficiency. Here, using first-principles density functional theory combined with the semiclassical Boltzmann transport equations, we systematically studied the thermoelectric properties of nine Bi-based Half-Heusler compounds, XYBi (where, X=Ti, Zr, Hf; Y=Co, Rh, Ir). We demonstrate that these compounds exhibit a moderate band gap (Eg) and an exceptionally high power factor (PF), outperforming many conventional thermoelectric materials. The high power factor primarily stems from the very high charge carrier concentration and high electrical conductivity. However, these Half-Heusler compounds show moderate thermal conductivity (κ). Based on our calculations, these Bi-based Half-Heusler compounds exhibit sufficiently high ZT values ranging from 0.56 to 1.98, with the highest values being 1.98 and 1.93 for n-type ZrRhBi and p-type HfRhBi, respectively. Our work reveals the inherent high ZT values in these previously less-explored Bi-based Half-Heusler compounds, indicating their strong potential for high-performance thermoelectric device applications.

Abstract Image

增强铋基半赫斯勒化合物 XYBi(X:Ti、Zr、Hf;Y:Co、Rh、Ir)的热电性能
在过去几十年中,半海斯勒材料因其成本效益高、热稳定性高、机械强度高、功率因数(PF)高、无毒和效率适中等优点,在热电应用领域赢得了大量研究关注。在此,我们利用第一原理密度泛函理论结合半经典玻尔兹曼输运方程,系统地研究了九种铋基半休斯勒化合物 XYBi(其中,X=钛、锆、铪;Y=钴、铑、铱)的热电性能。我们证明,这些化合物具有适中的带隙 (Eg) 和极高的功率因数 (PF),优于许多传统热电材料。高功率因数主要源于极高的电荷载流子浓度和高导电性。然而,这些半海斯勒化合物显示出适度的热导率(κ)。根据我们的计算,这些铋基半海斯勒化合物显示出足够高的 ZT 值,范围在 0.56 至 1.98 之间,其中 n 型 ZrRhBi 和 p 型 HfRhBi 的 ZT 值最高,分别为 1.98 和 1.93。我们的工作揭示了这些以前较少探索的铋基半海斯勒化合物固有的高 ZT 值,表明它们在高性能热电器件应用方面具有强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信