Qing Wang, Jeonguk Kweon, Dongwook Kim and Sukbok Chang*,
{"title":"Remote Catalytic C(sp3)–H Alkylation via Relayed Carbenoid Transfer upon Olefin Chain Walking","authors":"Qing Wang, Jeonguk Kweon, Dongwook Kim and Sukbok Chang*, ","doi":"10.1021/jacs.4c1101410.1021/jacs.4c11014","DOIUrl":null,"url":null,"abstract":"<p >Transition metal carbenes have emerged as versatile intermediates for various types of alkylations. While reactions of metal carbene species with alkenes have been extensively studied, most examples focus on cyclopropanation and allylic C–H insertion. Herein, we present the first example of a catalytic strategy for the carbene-involved regioselective remote C–H alkylation of internal olefins by synergistically combining two iridium-mediated reactivities of olefin chain walking and carbenoid migratory insertion. The present method, utilizing sulfoxonium ylides as a bench-stable robust carbene precursor, was found to be effective for a series of olefins tethered with alkyl chains, heteroatom substituents, and complex biorelevant moieties. Combined experimental and computational studies revealed that reversible iridium hydride-mediated olefin chain walking proceeds to lead to a terminal alkyl-Ir intermediate, which then forms a carbenoid species for the final migratory insertion, resulting in regioselective terminal-alkylated products.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"31114–31123 31114–31123"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal carbenes have emerged as versatile intermediates for various types of alkylations. While reactions of metal carbene species with alkenes have been extensively studied, most examples focus on cyclopropanation and allylic C–H insertion. Herein, we present the first example of a catalytic strategy for the carbene-involved regioselective remote C–H alkylation of internal olefins by synergistically combining two iridium-mediated reactivities of olefin chain walking and carbenoid migratory insertion. The present method, utilizing sulfoxonium ylides as a bench-stable robust carbene precursor, was found to be effective for a series of olefins tethered with alkyl chains, heteroatom substituents, and complex biorelevant moieties. Combined experimental and computational studies revealed that reversible iridium hydride-mediated olefin chain walking proceeds to lead to a terminal alkyl-Ir intermediate, which then forms a carbenoid species for the final migratory insertion, resulting in regioselective terminal-alkylated products.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.