Quantifying NOx Emission Sources in Houston, Texas Using Remote Sensing Aircraft Measurements and Source Apportionment Regression Models

Daniel L. Goldberg*, Benjamin de Foy, M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood and Laura Judd, 
{"title":"Quantifying NOx Emission Sources in Houston, Texas Using Remote Sensing Aircraft Measurements and Source Apportionment Regression Models","authors":"Daniel L. Goldberg*,&nbsp;Benjamin de Foy,&nbsp;M. Omar Nawaz,&nbsp;Jeremiah Johnson,&nbsp;Greg Yarwood and Laura Judd,&nbsp;","doi":"10.1021/acsestair.4c0009710.1021/acsestair.4c00097","DOIUrl":null,"url":null,"abstract":"<p >Air quality managers in areas exceeding air pollution standards are motivated to understand where there are further opportunities to reduce NO<sub><i>x</i></sub> emissions to improve ozone and PM<sub>2.5</sub> air quality. In this project, we use a combination of aircraft remote sensing (i.e., GCAS), source apportionment models (i.e., CAMx), and regression models to investigate NO<sub><i>x</i></sub> emissions from individual source-sectors in Houston, TX. In prior work, GCAS column NO<sub>2</sub> was shown to be close to the “truth” for validating column NO<sub>2</sub> in model simulations. Column NO<sub>2</sub> from CAMx was substantially low biased compared to Pandora (−20%) and GCAS measurements (−31%), suggesting an underestimate of local NO<sub><i>x</i></sub> emissions. We applied a flux divergence method to the GCAS and CAMx data to distinguish the linear shape of major highways and identify NO<sub>2</sub> underestimates at highway locations. Using a multiple linear regression (MLR) model, we isolated on-road, railyard, and “other” NO<sub><i>x</i></sub> emissions as the likeliest cause of this low bias, and simultaneously identified a potential overestimate of shipping NO<sub><i>x</i></sub> emissions. Based on the MLR, we modified on-road and shipping NO<sub><i>x</i></sub> emissions in a new CAMx simulation and increased the background NO<sub>2</sub>, and better agreement was found with GCAS measurements: bias improved from −31% to −10% and r<sup>2</sup> improved from 0.78 to 0.80. This study outlines how remote sensing data, including fine spatial information from newer geostationary instruments, can be used in concert with chemical transport models to provide actionable information for air quality managers to identify further opportunities to reduce NO<sub><i>x</i></sub> emissions.</p><p >Sector NO<sub><i>x</i></sub> emissions in Houston, Texas are constrained by combining GCAS remote sensing NO<sub>2</sub> measurements and source apportioned chemical transport modeling using regression analysis; on-road NO<sub><i>x</i></sub> underestimated, shipping NO<sub><i>x</i></sub> overestimated.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 11","pages":"1391–1401 1391–1401"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air quality managers in areas exceeding air pollution standards are motivated to understand where there are further opportunities to reduce NOx emissions to improve ozone and PM2.5 air quality. In this project, we use a combination of aircraft remote sensing (i.e., GCAS), source apportionment models (i.e., CAMx), and regression models to investigate NOx emissions from individual source-sectors in Houston, TX. In prior work, GCAS column NO2 was shown to be close to the “truth” for validating column NO2 in model simulations. Column NO2 from CAMx was substantially low biased compared to Pandora (−20%) and GCAS measurements (−31%), suggesting an underestimate of local NOx emissions. We applied a flux divergence method to the GCAS and CAMx data to distinguish the linear shape of major highways and identify NO2 underestimates at highway locations. Using a multiple linear regression (MLR) model, we isolated on-road, railyard, and “other” NOx emissions as the likeliest cause of this low bias, and simultaneously identified a potential overestimate of shipping NOx emissions. Based on the MLR, we modified on-road and shipping NOx emissions in a new CAMx simulation and increased the background NO2, and better agreement was found with GCAS measurements: bias improved from −31% to −10% and r2 improved from 0.78 to 0.80. This study outlines how remote sensing data, including fine spatial information from newer geostationary instruments, can be used in concert with chemical transport models to provide actionable information for air quality managers to identify further opportunities to reduce NOx emissions.

Sector NOx emissions in Houston, Texas are constrained by combining GCAS remote sensing NO2 measurements and source apportioned chemical transport modeling using regression analysis; on-road NOx underestimated, shipping NOx overestimated.

利用遥感飞机测量数据和源分配回归模型量化得克萨斯州休斯顿的氮氧化物排放源
空气污染超标地区的空气质量管理者希望了解在哪些方面有机会进一步减少氮氧化物的排放,以改善臭氧和 PM2.5 的空气质量。在本项目中,我们将飞机遥感(即 GCAS)、源分配模型(即 CAMx)和回归模型相结合,调查德克萨斯州休斯顿市各个源部门的氮氧化物排放量。在之前的工作中,GCAS 的氮氧化物柱接近 "真相",可用于验证模型模拟中的氮氧化物柱。与 Pandora(-20%)和 GCAS 测量值(-31%)相比,来自 CAMx 的氮氧化物柱偏差明显偏低,这表明当地的氮氧化物排放量被低估了。我们对 GCAS 和 CAMx 数据采用了通量发散法,以区分主要高速公路的线性形状,并确定高速公路位置的二氧化氮低估值。利用多元线性回归 (MLR) 模型,我们将公路、油库和 "其他 "氮氧化物排放分离出来,认为它们是造成低偏差的最可能原因,并同时确定了航运氮氧化物排放的潜在高估。根据 MLR,我们在新的 CAMx 模拟中修改了公路和航运 NOx 排放量,并增加了背景 NO2,结果发现与 GCAS 测量结果的一致性更好:偏差从 -31% 降低到 -10%,r2 从 0.78 提高到 0.80。这项研究概述了如何将遥感数据(包括来自较新地球静止仪器的精细空间信息)与化学传输模型结合使用,为空气质量管理者提供可操作的信息,以确定进一步减少氮氧化物排放的机会。通过结合 GCAS 遥感二氧化氮测量数据和使用回归分析的源分配化学传输模型,德克萨斯州休斯顿的部门氮氧化物排放量受到了限制;公路氮氧化物被低估,运输氮氧化物被高估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信