Formation of Sodium Chloride on the Surface of Sulfate-Rich Gobi Desert Salt in Response to Water Adsorption

Nicolas Fauré, Jie Chen, Luca Artiglia, Markus Ammann, Thorsten Bartels-Rausch, Zamin A. Kanji, Sen Wang, Jan B. C. Pettersson, Erik S. Thomson*, Ivan Gladich* and Xiangrui Kong*, 
{"title":"Formation of Sodium Chloride on the Surface of Sulfate-Rich Gobi Desert Salt in Response to Water Adsorption","authors":"Nicolas Fauré,&nbsp;Jie Chen,&nbsp;Luca Artiglia,&nbsp;Markus Ammann,&nbsp;Thorsten Bartels-Rausch,&nbsp;Zamin A. Kanji,&nbsp;Sen Wang,&nbsp;Jan B. C. Pettersson,&nbsp;Erik S. Thomson*,&nbsp;Ivan Gladich* and Xiangrui Kong*,&nbsp;","doi":"10.1021/acsestair.4c0009210.1021/acsestair.4c00092","DOIUrl":null,"url":null,"abstract":"<p >Dust storms in arid regions transport desert salts and dust, affecting geochemical processes, atmospheric chemistry, climate, and human health. This study examines how the gas–salt interface composition of desert salt changes with varying relative humidity (RH), using ambient pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and molecular dynamics (MD) simulations. Ion chromatography analysis of desert salt indicates it is predominantly composed of sulfate, sodium, and magnesium ions, with traces of calcium, chloride, nitrate, and potassium ions. APXPS and NEXAFS surface analyses show that, at 0% RH, the gas–salt interface primarily features Na<sub>2</sub>SO<sub>4</sub>, with smaller amounts of MgSO<sub>4</sub> and a trace of NaCl on the top layers. As humidity increases, the composition at the gas–salt interface changes, notably with Mg<sup>2+</sup> binding to SO<sub>4</sub><sup>2–</sup> ions and a dominant NaCl formation throughout the studied surface depth. This shift indicates a transition from a sulfate- to a chloride-rich surface as humidity increases, contradicting MD simulations that predicted that on salt crystals covered by a submonolayer of water with electrolytes, chloride ions migrate toward the liquid–solid interface. This discrepancy indicates that other factors, like enhanced ionic mobility at grain boundaries, might drive the accumulation of chloride ions at the gas interface. The study emphasizes the crucial role of adsorbed water in ion migration and surface composition transformation of desert salts, affecting geochemical processes in arid regions.</p><p >Water adsorption-driven transformation of Gobi Desert salts, leading to surface sodium chloride formation, with potential implications for atmospheric chemistry in dust storm-affected regions.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"1 11","pages":"1373–1382 1373–1382"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dust storms in arid regions transport desert salts and dust, affecting geochemical processes, atmospheric chemistry, climate, and human health. This study examines how the gas–salt interface composition of desert salt changes with varying relative humidity (RH), using ambient pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and molecular dynamics (MD) simulations. Ion chromatography analysis of desert salt indicates it is predominantly composed of sulfate, sodium, and magnesium ions, with traces of calcium, chloride, nitrate, and potassium ions. APXPS and NEXAFS surface analyses show that, at 0% RH, the gas–salt interface primarily features Na2SO4, with smaller amounts of MgSO4 and a trace of NaCl on the top layers. As humidity increases, the composition at the gas–salt interface changes, notably with Mg2+ binding to SO42– ions and a dominant NaCl formation throughout the studied surface depth. This shift indicates a transition from a sulfate- to a chloride-rich surface as humidity increases, contradicting MD simulations that predicted that on salt crystals covered by a submonolayer of water with electrolytes, chloride ions migrate toward the liquid–solid interface. This discrepancy indicates that other factors, like enhanced ionic mobility at grain boundaries, might drive the accumulation of chloride ions at the gas interface. The study emphasizes the crucial role of adsorbed water in ion migration and surface composition transformation of desert salts, affecting geochemical processes in arid regions.

Water adsorption-driven transformation of Gobi Desert salts, leading to surface sodium chloride formation, with potential implications for atmospheric chemistry in dust storm-affected regions.

富含硫酸盐的戈壁滩盐表面因吸附水而形成氯化钠
干旱地区的沙尘暴会带走沙漠中的盐分和尘埃,影响地球化学过程、大气化学、气候和人类健康。本研究利用环境压力 X 射线光电子能谱 (APXPS)、近边 X 射线吸收精细结构 (NEXAFS) 光谱和分子动力学 (MD) 模拟,研究了沙漠盐的气盐界面成分如何随相对湿度 (RH) 变化而变化。对沙漠盐的离子色谱分析表明,沙漠盐主要由硫酸根离子、钠离子和镁离子组成,还有微量的钙、氯、硝酸根离子和钾离子。APXPS 和 NEXAFS 表面分析表明,在 0% 相对湿度条件下,气体-盐界面的主要成分是 Na2SO4,顶层含有少量 MgSO4 和微量 NaCl。随着湿度的增加,气盐界面的成分发生了变化,特别是 Mg2+ 与 SO42- 离子结合,在整个研究的表面深度形成了主要的 NaCl。这种变化表明,随着湿度的增加,表面从富含硫酸盐过渡到富含氯化物,这与 MD 模拟预测的结果相矛盾,后者预测在被带电解质的亚单层水覆盖的盐晶体上,氯离子会向液固界面迁移。这种差异表明,其他因素,如晶界处离子迁移率的增强,可能会推动氯离子在气体界面的积累。这项研究强调了吸附水在沙漠盐类的离子迁移和表面成分转变中的关键作用,影响了干旱地区的地球化学过程。水吸附驱动的戈壁沙漠盐类转变,导致表面氯化钠的形成,对受沙尘暴影响地区的大气化学具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信