Syntheses, Geometric and Electronic Structures of Inorganic Cumulenes

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianqin Tang, Chenyang Hu, Agamemnon E. Crumpton, Maximilian Dietz, Debotra Sarkar, Liam P. Griffin, Jose M. Goicoechea* and Simon Aldridge*, 
{"title":"Syntheses, Geometric and Electronic Structures of Inorganic Cumulenes","authors":"Jianqin Tang,&nbsp;Chenyang Hu,&nbsp;Agamemnon E. Crumpton,&nbsp;Maximilian Dietz,&nbsp;Debotra Sarkar,&nbsp;Liam P. Griffin,&nbsp;Jose M. Goicoechea* and Simon Aldridge*,&nbsp;","doi":"10.1021/jacs.4c1323110.1021/jacs.4c13231","DOIUrl":null,"url":null,"abstract":"<p >Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic “molecular wires” are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)–B≡N–B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C<sub>5</sub>F<sub>5</sub>)<sub>3</sub>) to enhance their π-acidity and conjugate the N-lone pairs.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30778–30783 30778–30783"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c13231","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c13231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular chains of two-coordinate carbon atoms (cumulenes) have long been targeted, due to interest in the electronic structure and applications of extended π-systems, and their relationship to the carbon allotrope, carbyne. While formal (isoelectronic) B═N for C═C substitution has been employed in two-dimensional (2-D) materials, unsaturated one-dimensional all-inorganic “molecular wires” are unknown. Here, we report high-yielding synthetic approaches to heterocumulenes containing a five-atom BNBNB chain, the geometric structure of which can be modified by choice of end group. The diamido-capped system is bent at the 2-/4-positions, and natural resonance theory calculations reveal significant contributions from B═N(:)–B≡N–B resonance forms featuring a lone pair at N (consistent with observed N-centered nucleophilicity). Molecular modification to generate a linear system best described by a B═N═B═N═B resonance structure involves chemical transformation of the capping groups (using B(C5F5)3) to enhance their π-acidity and conjugate the N-lone pairs.

无机积雪烯的合成、几何结构和电子结构
由于人们对扩展 π 系统的电子结构和应用以及它们与碳同素异形体碳烯的关系感兴趣,双配位碳原子分子链(积碳)长期以来一直是研究的目标。虽然二维(2-D)材料已经采用了形式(等电子)B═N 对 C═C 的取代,但不饱和的一维全无机 "分子线 "还不为人知。在此,我们报告了含有五原子 BNBNB 链的杂茂烯烃的高产合成方法,该链的几何结构可通过选择末端基团而改变。二氨基封端体系在 2-/4 位弯曲,自然共振理论计算显示,B═N(:)-B≡N-B 共振形式具有显著的贡献,其特点是 N 位有一个孤对(与观察到的 N 中心亲核性一致)。要生成一个由 B═N═B═N═B 共振结构描述的线性系统,需要对封端基团(使用 B(C5F5)3)进行化学转化,以增强其 π-酸度并轭合 N 孤对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信