{"title":"Continuous Electrosynthesis of Pure H2O2 Solution with Medical-Grade Concentration by a Conductive Ni-Phthalocyanine-Based Covalent Organic Framework","authors":"Meng-Di Zhang, Jia-Run Huang, Cheng-Peng Liang, Xiao-Ming Chen and Pei-Qin Liao*, ","doi":"10.1021/jacs.4c1067510.1021/jacs.4c10675","DOIUrl":null,"url":null,"abstract":"<p >Electrosynthesis of H<sub>2</sub>O<sub>2</sub> provides an environmentally friendly alternative to the traditional anthraquinone method employed in industry, but suffers from impurities and restricted yield rate and concentration of H<sub>2</sub>O<sub>2</sub>. Herein, we demonstrated a Ni-phthalocyanine-based covalent-organic framework (COF, denoted as <b>BBL-PcNi</b>) with a higher inherent conductivity of 1.14 × 10<sup>–5</sup> S m<sup>–1</sup>, which exhibited an ultrahigh current density of 530 mA cm<sup>–2</sup> with a Faradaic efficiency (H<sub>2</sub>O<sub>2</sub>) of ∼100% at a low cell voltage of 3.5 V. Notably, this high level of performance is maintained over a continuous operation of 200 h without noticeable degradation. When integrated into a scale-up membrane electrode assembly electrolyzer and operated at ∼3300 mA at a very low cell voltage of 2 V, <b>BBL-PcNi</b> continuously yielded a pure H<sub>2</sub>O<sub>2</sub> solution with medical-grade concentration (3.5 wt %), which is at least 3.5 times higher than previously reported catalysts and 1.5 times the output of the traditional anthraquinone process. A mechanistic study revealed that enhancing the π-conjugation to reduce the band gap of the molecular catalytic sites integrated into a COF is more effective to enhance its inherent electron transport ability, thereby significantly improving the electrocatalytic performance for H<sub>2</sub>O<sub>2</sub> generation.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"31034–31041 31034–31041"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrosynthesis of H2O2 provides an environmentally friendly alternative to the traditional anthraquinone method employed in industry, but suffers from impurities and restricted yield rate and concentration of H2O2. Herein, we demonstrated a Ni-phthalocyanine-based covalent-organic framework (COF, denoted as BBL-PcNi) with a higher inherent conductivity of 1.14 × 10–5 S m–1, which exhibited an ultrahigh current density of 530 mA cm–2 with a Faradaic efficiency (H2O2) of ∼100% at a low cell voltage of 3.5 V. Notably, this high level of performance is maintained over a continuous operation of 200 h without noticeable degradation. When integrated into a scale-up membrane electrode assembly electrolyzer and operated at ∼3300 mA at a very low cell voltage of 2 V, BBL-PcNi continuously yielded a pure H2O2 solution with medical-grade concentration (3.5 wt %), which is at least 3.5 times higher than previously reported catalysts and 1.5 times the output of the traditional anthraquinone process. A mechanistic study revealed that enhancing the π-conjugation to reduce the band gap of the molecular catalytic sites integrated into a COF is more effective to enhance its inherent electron transport ability, thereby significantly improving the electrocatalytic performance for H2O2 generation.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.