Tao Li, Nore Stolte, Renbiao Tao, Dimitri A. Sverjensky, Isabelle Daniel and Ding Pan*,
{"title":"Synthesis and Stability of Biomolecules in C–H–O–N Fluids under Earth’s Upper Mantle Conditions","authors":"Tao Li, Nore Stolte, Renbiao Tao, Dimitri A. Sverjensky, Isabelle Daniel and Ding Pan*, ","doi":"10.1021/jacs.4c1168010.1021/jacs.4c11680","DOIUrl":null,"url":null,"abstract":"<p >How life started on Earth is an unsolved mystery. There are various hypotheses for the location ranging from outer space to the seafloor, subseafloor, or potentially deeper. Here, we applied extensive ab initio molecular dynamics simulations to study chemical reactions between NH<sub>3</sub>, H<sub>2</sub>O, H<sub>2</sub>, and CO at pressures (<i>P</i>) and temperatures (<i>T</i>) approximating the conditions of Earth’s upper mantle (i.e., 10–13 GPa, 1000–1400 K). Contrary to the previous assumptions that large organic molecules might readily disintegrate in aqueous solutions at extreme <i>P</i>–<i>T</i> conditions, we found that many organic compounds formed without any catalysts and persisted in C–H–O–N fluids under these extreme conditions, including glycine, ribose, urea, and uracil-like molecules. Particularly, our free-energy calculations showed that the C–N bond is thermodynamically stable at 10 GPa and 1400 K. Moreover, while the pyranose (six-membered ring) form of ribose is more stable than the furanose (five-membered ring) form at ambient conditions, we found that the formation of the five-membered-ring form of ribose is thermodynamically more favored at extreme conditions, which is consistent with the exclusive incorporation of β-<span>d</span>-ribofuranose in RNA. We have uncovered a previously unexplored pathway through which the crucial biomolecules could be abiotically synthesized from geofluids in the deep interior of Earth and other planets, and these formed biomolecules could potentially contribute to the early stage of the emergence of life.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"31240–31250 31240–31250"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
How life started on Earth is an unsolved mystery. There are various hypotheses for the location ranging from outer space to the seafloor, subseafloor, or potentially deeper. Here, we applied extensive ab initio molecular dynamics simulations to study chemical reactions between NH3, H2O, H2, and CO at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle (i.e., 10–13 GPa, 1000–1400 K). Contrary to the previous assumptions that large organic molecules might readily disintegrate in aqueous solutions at extreme P–T conditions, we found that many organic compounds formed without any catalysts and persisted in C–H–O–N fluids under these extreme conditions, including glycine, ribose, urea, and uracil-like molecules. Particularly, our free-energy calculations showed that the C–N bond is thermodynamically stable at 10 GPa and 1400 K. Moreover, while the pyranose (six-membered ring) form of ribose is more stable than the furanose (five-membered ring) form at ambient conditions, we found that the formation of the five-membered-ring form of ribose is thermodynamically more favored at extreme conditions, which is consistent with the exclusive incorporation of β-d-ribofuranose in RNA. We have uncovered a previously unexplored pathway through which the crucial biomolecules could be abiotically synthesized from geofluids in the deep interior of Earth and other planets, and these formed biomolecules could potentially contribute to the early stage of the emergence of life.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.